NTCIR-4 Chinese, English, Korean Cross Language Retrieval Experiments using PIRCS

K. L. Kwok, N. Dinstl & S. Choi
Computer Science Department, Queens College, City University of New York, Flushing, NY 11367, USA
kwok@ir.cs.qc.edu

Abstract

In NTCIR-4 we participated in Korean, Chinese and English monolingual retrieval, Chinese-English, English-Korean bilingual, and Chinese-Korean cross language (using English as pivot language) retrieval tasks based on our PIRCS retrieval system. The query translation approach was employed for CLIR. We combined two MT translations for Chinese-English, and two for English-Korean. For the latter, a web-based entity-oriented translation procedure was also used to translate un-translated terms. Concatenation of MT output was found to lead to better CLIR effectiveness than single MT, while entity translation brings further improvements of about 15%. The direct bilingual CLIR perform between 71% and 88% of monolingual, and appear to be best among submissions. For retrieval from Korean collection, bigram performs better than word indexing, and combination of the two provides better results, in most cases. Chinese-Korean retrieval runs via English as pivot language provide results with mean average precision between 56% and 66% of our Korean monolingual runs. All submissions are automatic runs without manual intervention.

Keywords: monolingual Korean, Chinese retrieval; CLIR; MLIR; bigram indexing; short-word indexing.

1 Introduction

Participants in CLIR tasks need to experiment with more than two languages in NTCIR-4. We took this opportunity to add Korean (K) as the third language to our PIRCS retrieval system’s usual English (E) and Chinese (C) capability. Usage of these three languages is diagrammed in Fig.1 above to show the tasks that we have done and submitted. Our convention is to denote the query language via the notation QABC: meaning that the final language is C and it has been derived through query translation from source language A via a pivot language B. Direct query translation is denoted as QAB, for example. The last superscript language character always indicates what collection language this query would operate on.

There were a total of fourteen runs. These include retrievals with Chinese target collections named as: pircs-C-C-T-01 pircs-C-C-D-02; retrievals with English target collections named as: pircs-E-E-T-01 pircs-E-E-D-02 pircs-C-E-T-01 pircs-C-E-D-02; and retrievals with Korean target collections named as: pircs-K-K-T-01 pircs-K-K-D-02 pircs-K-K-DN-03 pircs-E-K-T-01 pircs-E-K-D-02 pircs-C-K-T-01 pircs-C-K-D-02 pircs-C-K-DN-03

The pircs-C-K-xxx CLIR experiments employ the Q_{CEK} queries with transitive translations. All retrievals include using the title or the description sections of the topics provided. In addition, for K-K and C-K experiments, runs using the description plus narrative sections are also submitted. We continue to use our PIRCS retrieval system [1]. This has been modified to support Korean processing. All our retrievals are automatic with PRF (pseudo-relevance feedback) as a default.

2 Translation Resources

The most important tools for cross language tasks are translation resources. We continue to employ the efficient query translation approach. Resources are needed to translate from Chinese to English, English to Korean and Chinese to Korean. The latter however seems not available easily (in the U.S.). Both Chinese
to English and English to Korean translation are new to us. These are considered major languages. We decide to use commercially available MT software for this purpose. We assume that they will provide reasonable translation for general English, but may not be sufficient for entity or terminology words. We augment the result with an entity/terminology-oriented web-based translation methodology that was being developing. One of our goals in NTCIR-4 is to test whether combining multiple MT outputs for query translation works better than single MT.

2a Chinese-English MT Software

For Chinese-English translation, Systran [2] and Loto [3] software packages were used. Systran has a long history of C-E translation. Loto is a product newly marketed in America; it evolved from the Huajian English-Chinese MT software in China. A license to Loto allows one to have a stand-alone MT package on a PC, as well as web access to their company’s central translation software. The latter is advertised to get updated regularly to provide better translation than the static, stand-alone version; but it is restricted to one single installation computer only. We have used the online translation facility for these experiments.

Our hypothesis is that combination of MT translation can bring more robust results. Given a query, two separate translations are performed and the results are concatenated together. If a source word/phrase leads to the same (duplicate) target translations, they may be regarded as ‘confirmed’ correct and are automatically weighted heavier. When translations differ, there is also possibility that they provide different wordings for the same source concept and therefore may hedge against insufficient coverage. In the case of English-Korean, one MT may provide semantic translation while the other may output transliteration. The trade off is that when both were wrong, we end up with twice as much noise.

The following shows example output of typical Chinese-English translations of the description section of a topic for readers to judge their quality. Included at the end are six additional terms that are obtained from pre-translation expansion processing (see Section 4c).

qry#55 Original Chinese:
亞洲各國對北韓發射大浦洞（Daepodong）飛彈反應，
試射 彈道 和南 射程 防衛廳 飛越

qry#55 English Translation via Systran:
The Asian various countries launches the big water's edge hole to North Korea (Daepodong) the guided missile response.
Test fire Trajectory With south Firing distance

2b English-Korean MT Software

In the U.S., resources for Korean language are not as common as other major languages. For English-Korean, we employed the English to CJK capability of Systran. Another package called English Guide (EnGuide) [4] from LniSoft was also acquired from Korea. The latter has user interface in Korean only, and is therefore not suitable for users who do not understand Korean. It also has difficulty handling sentences having words with capitalized first letter in the middle of a sentence (which is the case with the title section of our queries in English). We overcome this problem by producing two versions of the title section: one with the title all in lower case, and the other with the case information retained but put each word into a separate line.

Some examples of English-Korean translations are shown below. Included are un-translated English words that are picked up by our entity-oriented translation procedure (Section 2c).

qry#2 Original English:
Find out who joined the Jonnie Walker Charity Golf Tournament in Taiwan in 1999 and the related activities.

qry#2 Korean Translation via Systran:
누가 1999 년에 대한과 관계있는 활동에 대단히 편향한가? 누가 1999 년에 대한과 관계있는 활동에 대단히 편향한가?
Jonnie 보험자 자선 골프 경기 대회를 1999 년에 대한과 관계있는 활동에 대해 편향한가? 누가 1999 년에 대한과 관계있는 활동에 대해 편향한가?

qry#2 Korean Translation via LniSoft:

In addition, the Chinese-English translations in Section 2a are fed directly into the English-Korean MT software to provide four mappings between Chinese-Korean via transitive translation. The output for example query #55 used in Section 2a is shown below:
\textbf{qry#55 Systran English pivot, Korean Translation via Systran:}

아시아 각종 나라라는 북한 Daepodong에 큰 줄
가장자리 구성물 유도 미사일 응답 발사한다.
시험 불
탄도
남쪽에
발포 거리
일본 방위 기관
됨

\textbf{qry#55 Systran English pivot, Korean Translation via LniSoft:}

아시아 여러가지 국가들은 유도탄 대담인
북한 Daepodong으로 큰 물의 경계 곤경을
날립니다.
طرف는 불이 블입니다.
탄도.
남쪽과.
불이 블고 있는 거리.
일본 Defense 정부 기관.
Defense 방어 121 제제 55
위십시오.

\textbf{qry#55 Loto English pivot, Korean Translation via Systran:}

아시아 각종 나라ahas 한국에 무거운 구명 Pu
Daepodong The 무소주 탄발은 만작용한다.
Pu 를 알려주신다 Daepodong The 일일은 가축
총알은 만작용합니다.
Pu 폴리우레탄 41 접착제 27
예심 불
탄도.
남쪽에
범위
방위 사무실
널어서의 비행거리

\textbf{qry#55 Loto English pivot, Korean Translation via LniSoft:}

아시아 여러가지 국가들은 한국에 무거운 구명
Pu를 내보냅니다 Daepodong The 일일은 가축
총알은 만작용합니다.
Pu 폴리우레탄 41 접착제 27
시험은 불이 블습니다.
탄도.
남쪽과.
줄지으십시오.
방어 사무실.
비행허하시오.

\textbf{2c Web-based Entity Translation}

Our assumption is that MT software can provide
reasonably translation for general language
expressions but may not be sufficient for entities such
as names of person or places, etc. We implemented a
web-based translation from English to Korean (and
Chinese) that is oriented to entity names and
terminology [5]. It is based on the normal convention
of writers to express translations in bilingual
document fragments in the following form:
(kkkkk (eeeee)). or (eee (kkkk)), where kkkkk and eeee
are Korean and English strings respectively. When
either of such patterns is encountered, it is quite
likely that kkkkk will contain some kind of
translation of eeee, or vice versa. We search the web
using an English term as key and request output
snippets in Korean. These snippets are searched for
the pattern above, and candidates for translation are
isolated after some text processing and noise
filtering.

This procedure was employed in E-K CLIR to
translate any English terms that remain after the two
MT software operations. Examples of these
translations are also shown in Section 2b. Consider
\textbf{qry#2} via Systran: translations for ‘Jonnie’ were
picked up with the indicated occurrence frequency in
the returned web snippets. This was not performed
for \textbf{qry#2} via LniSoft because additional English
words are adjacent to ‘Jonnie’. Our procedure regards
such a word sequence as an indivisible phrase to gain
precision, and try to locate its translation on the web.
Apparently it failed. In \textbf{qry#55}, the translation for
‘Daepodong’ was also not found by our procedure.

\section{3 Korean Text Processing and Indexing}

Korean text is written with blank space as
delimiter, but the characters in between can denote
words, compounds or phrases [6]. For all tasks
involving Korean, we employed a simple strategy of
overlapping bigram indexing on the original texts
without stemming or stopword removal as a default.
In addition, we used a program called HAM version
6.0.0 [7] for the E-K and C-K retrieval tasks. HAM is
an acronym for Hangul Analysis Module (or Model).
It is a Korean lexical analyzer for Hangul (Korean)
text. It supports an ‘index’ program which removes
suffixes and stopwords and extracts simple nouns
from compounds. For our indexing purposes, we
keep both the simple nouns, the original compounds
and the stemmed verbs, etc. We kept compounds
because we can have some phrase indexing and also
like to hedge concerning the outcome of
segmentation. We call this HAM indexing.

\section{4 Retrieval with Korean Collections:}
\textbf{4a K-K Monolingual Retrieval}

Eight submissions using the Korean collection as
retrieval target were submitted. Three were
monolingual using title (T), description (D) and
description with narrative (DN) sections of a topic to
Table 1a,b: Monolingual Korean Results for 57 Query Types T, D, DN.

Table 2a,b: E-K Crosslingual Results for 57 Query Types T, D.
Table 2 shows that for E-K the MAP difference between T and D queries are small (.3598 vs .3566 relax) unlike K-K monolingual. Worth noting is that the precisions at 10 and 20 for D queries are about 10% better than for T (e.g. .5123 vs .4614). Apparently translation of the longer English D queries behaves similarly to T queries and can lead to translations more suitable for low-recall retrieval.

The E-K MAP values appear to be the best achieved among submissions. Compared to K-K monolingual retrieval, these crosslingual precision values attained 73% (T: .3598 vs .4934) and 82% (D: .3566 vs .4049) of relax effectiveness. The same comparisons for rigid assessment give: 78% (.3331 vs .4588) and 86% (.3249 vs .3777) respectively.

The un-submitted D run tagged ‘no web’ in Table 2 means no web entity translation was performed and can be compared with the submitted D run. This process has led to over 15% improvement (0.3064 vs. 0.3566 relax, significant at 5% level using sign test).

The * rows tagged ‘b’ and ‘w’ in Table 2 show un-submitted results of using bigram and HAM indexing scheme alone. The latter returns slightly worse MAP values than pure bigram: 0.3342 vs 0.3578 for T queries and 0.3154 vs 0.3388 for D queries. Combination of the two retrieval lists (our submitted results) however improves over both individually, unlike K-K runs.

In Table 2, we also show two bigram D runs that use either Systran (pircs-E-K-D-b-sys) or EnGuide (pircs-E-K-D-b-sys) translations only. These results are inferior (e.g., MAP for Systran is 0.2958, for EnGuide is 0.2581, compared to 0.3388 for pircs-E-K-D-02b where both translations were concatenated. Sign tests are significant at the 5% level for these improvements). This appears to support our assumption that MT combination leads to better effectiveness compared to using them singly.

We investigated why EnGuide results are inferior to Systran for description queries using bigram indexing. Part of the reason seems to be that entity names (like query #2: ‘Jonnie Walker Charity Golf Tournament’) in English queries are capitalized, and EnGuide has problem with them. Systran however is more flexible in regard to Ascii case and often provides the correct translation.

4c C-K Crosslingual Retrieval via English as Pivot

Results of our C-K retrieval using Cos^C_K transitive translation queries are tabulated in Table 3. Here, the Chinese queries (T and D only) first underwent a pre-translation expansion using the Chinese collections. (For DN queries, we assume they are sufficiently long that pre-translation would not have much effect.) We employ the top 10 documents of an initial retrieval and added conservatively only 6 terms to each query. The queries were translated two ways into English using Systran and Loto packages as discussed in Section 2. The English output were further translated into Korean by Systran and EnGuide, resulting in four Korean mappings for each query. Any English terms left un-translated were processed by our web-based translation. The final queries were then indexed in two ways bigram (b) and HAM indexing (w) as in E-K. The submitted results use combination of retrieval lists from (b) and (w) runs.

An error was later discovered in the PRF process for the description pircs-C-K-D-02 run, which is tagged with ‘e’. (The number of feedback documents was random for this run.) The next row *C-K-D-02 bw without error tag ‘e’ tabulates the corrected values. It is about 5-6% better.

The C-K relax assessment MAP values range between 0.2784 D queries to 0.3076 for DN queries. They represent 56% (T queries: .2783/4934), 69% (D: .2784/4049) and 60% (DN: .3076/5161) of monolingual K-K retrieval. For rigid assessment, these ratios are: 56%, 70% and 61% respectively. Short title queries have worst comparison to K-K monolingual.

<table>
<thead>
<tr>
<th>pircs-</th>
<th>R%</th>
<th>MAP</th>
<th>P10</th>
<th>P20</th>
<th>R.Pre</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-K-T-01 bw</td>
<td>76</td>
<td>.2783</td>
<td>.4228</td>
<td>.3728</td>
<td>.3022</td>
</tr>
<tr>
<td>*C-K-T-01 b</td>
<td>66</td>
<td>.2448</td>
<td>.3526</td>
<td>.3263</td>
<td>.2690</td>
</tr>
<tr>
<td>*C-K-T-01 w</td>
<td>75</td>
<td>.2722</td>
<td>.4105</td>
<td>.3737</td>
<td>.2956</td>
</tr>
<tr>
<td>*C-K-T-01 bsy</td>
<td>72</td>
<td>.2706</td>
<td>.3825</td>
<td>.3386</td>
<td>.2953</td>
</tr>
<tr>
<td>Description Queries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-K-D-02 bw e</td>
<td>69</td>
<td>.2601</td>
<td>.3895</td>
<td>.3518</td>
<td>.2855</td>
</tr>
<tr>
<td>*C-K-D-02 bw</td>
<td>71</td>
<td>.2784</td>
<td>.3965</td>
<td>.3658</td>
<td>.2923</td>
</tr>
<tr>
<td>*C-K-D-02 b</td>
<td>62</td>
<td>.2402</td>
<td>.3123</td>
<td>.2965</td>
<td>.2640</td>
</tr>
<tr>
<td>*C-K-D-02 w</td>
<td>73</td>
<td>.2718</td>
<td>.3930</td>
<td>.3561</td>
<td>.2908</td>
</tr>
<tr>
<td>*C-K-D-02 bsy</td>
<td>69</td>
<td>.2681</td>
<td>.3807</td>
<td>.3447</td>
<td>.2905</td>
</tr>
<tr>
<td>Description + Narrative Queries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-K-DN-03 bw</td>
<td>70</td>
<td>.3076</td>
<td>.4281</td>
<td>.3737</td>
<td>.3181</td>
</tr>
</tbody>
</table>

a) Relax Assessment (number relevant = 3917)

<table>
<thead>
<tr>
<th>pircs-</th>
<th>R%</th>
<th>MAP</th>
<th>P10</th>
<th>P20</th>
<th>R.Pre</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-K-T-01 bw</td>
<td>78</td>
<td>.2590</td>
<td>.3702</td>
<td>.3237</td>
<td>.2792</td>
</tr>
<tr>
<td>*C-K-T-01 b</td>
<td>69</td>
<td>.2290</td>
<td>.3175</td>
<td>.2886</td>
<td>.2519</td>
</tr>
<tr>
<td>*C-K-T-01 w</td>
<td>77</td>
<td>.2520</td>
<td>.3614</td>
<td>.3246</td>
<td>.2760</td>
</tr>
<tr>
<td>*C-K-T-01 bsy</td>
<td>74</td>
<td>.2528</td>
<td>.3351</td>
<td>.2921</td>
<td>.2647</td>
</tr>
<tr>
<td>Description Queries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-K-D-02 bw e</td>
<td>70</td>
<td>.2471</td>
<td>.3526</td>
<td>.3202</td>
<td>.2706</td>
</tr>
<tr>
<td>*C-K-D-02 bw</td>
<td>73</td>
<td>.2632</td>
<td>.3596</td>
<td>.3298</td>
<td>.2782</td>
</tr>
<tr>
<td>*C-K-D-02 b</td>
<td>63</td>
<td>.2260</td>
<td>.3087</td>
<td>.2632</td>
<td>.2513</td>
</tr>
<tr>
<td>*C-K-D-02 w</td>
<td>74</td>
<td>.2555</td>
<td>.3509</td>
<td>.3219</td>
<td>.2734</td>
</tr>
<tr>
<td>*C-K-D-02 bsy</td>
<td>70</td>
<td>.2518</td>
<td>.3386</td>
<td>.3061</td>
<td>.2778</td>
</tr>
<tr>
<td>Description + Narrative Queries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-K-DN-03 bw</td>
<td>71</td>
<td>.2956</td>
<td>.3965</td>
<td>.3377</td>
<td>.3118</td>
</tr>
</tbody>
</table>

b) Rigid Assessment (number relevant = 3131)

Table 3a,b: C-K Cross Language Results for Query Types T, D, DN.
We would like to have direct Q>C-K bilingual retrieval results for comparison purposes but could not find resources for the direct C-K translation.

Table 3 also shows results using bigram indexing or word indexing alone. Here, bigram indexing returns results much worse than HAM indexing. It seems that going through four translations lead to proportionately more suffixes than content. Meaningless bigrams proliferate and becomes a factor. With HAM processing, stems and stopwords are removed and we do not have that much noise. The two rows tagged with 'bsys' are bigram runs with queries that concatenate only two Systran English-Korean translations (without EnGuide). Their results improve to close the gap with HAM indexing results.

5 Retrieval with English Collections:

5a E-E Monolingual Retrieval

English monolingual retrieval was performed to provide a basis for evaluating our Chinese-English crosslingual retrieval. Results are tabulated in Table 4. We employed Porter’s stemming, stopword removal, and PRF procedures in our runs.

<table>
<thead>
<tr>
<th>Title Queries</th>
<th>R% MAP P10 P20 R.Pre</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-E-T-01</td>
<td>62 .2879 .5017 .4888 .3319</td>
</tr>
<tr>
<td>*C-E-T-01 x-</td>
<td>62 .3235 .5069 .4888 .3494</td>
</tr>
</tbody>
</table>

a) Relax Assessment (number relevant = 11056)

5b C-E Crosslingual Retrieval

<table>
<thead>
<tr>
<th>Description Queries</th>
<th>R% MAP P10 P20 R.Pre</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-E-D-02</td>
<td>61 .2829 .4845 .4629 .2627</td>
</tr>
<tr>
<td>*C-E-D-02 x-</td>
<td>60 .2930 .4879 .4552 .2412</td>
</tr>
<tr>
<td>*C-E-D-02 sys</td>
<td>59 .2736 .4483 .4241 .2943</td>
</tr>
<tr>
<td>*C-E-D-02 lot</td>
<td>53 .2446 .4034 .3707 .2760</td>
</tr>
</tbody>
</table>

b) Rigid Assessment (number relevant = 5866)

Table 4a,b: E-E Monolingual Results for 58 Query Types T, D.

Chinese monolingual retrieval was performed as an intermediate step to our goal of C-K pivot retrieval. The process has been discussed in Section 4c. These results are tabulated in Table 5. The relax assessment MAP values of 0.2879 for T and 0.2829 for D queries appear to be the top results among participants. These represent 71% (T) and 73% (D) compared to our E-E monolingual retrieval relax assessment (Table 4a), and 75% and 73% for rigid assessment.

The Q^3^ queries do not have the assistance from web-assisted translation. The retrieval result supports our observation that the MT software are reasonably adequate for CLIR purposes.

Table 5 also shows two un-submitted runs that do not include pre-translation expansion (x-). To our surprise, MAP values without pre-translation are better than with pre-translation. Apparently the MT software themselves provide sufficiently good translations. Another two un-submitted D-query runs show results of using MT software individually: tagged as ‘sys’ and ‘lot’. Systran is better than Loto translation. Just as in E-K, the concatenated translation results for pircs-C-E-D-02 are better than these that use translations singly. Here however, the improvements are not significant according to the sign test at the 5% level.

Table 5a,b: C-E Crosslingual Results for 58 Query Types T, D.

Chinese monolingual retrieval was performed as in last year: based on combination of retrieval lists using bigram and word indexing. Results are shown in Table 6; they provide a basis for CLIR involving Chinese collections.

6 Chinese C-C Monolingual Retrieval

<table>
<thead>
<tr>
<th>Title Queries</th>
<th>R% MAP P10 P20 R.Pre</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-C-T-01</td>
<td>84 .2673 .3373 .2864 .2725</td>
</tr>
<tr>
<td>C-C-D-02</td>
<td>86 .2761 .3542 .2941 .2810</td>
</tr>
</tbody>
</table>

a) Relax Assessment (number relevant = 2085)

Table 6a,b: C-C Monolingual Results for 59 Query Types T, D.

b) Rigid Assessment (number relevant = 1318)

7 Conclusion and Discussion
We tested several MT packages for cross language retrieval purposes: Chinese to English, English to Korean. These are augmented with a web-based entity/terminology-oriented translation procedure. Experiments show that concatenation of two translations performs better than using them singly for direct C-E and E-K CLIR. Individually, Systran translation for C-E has better retrieval outcome than Loto, and for E-K Systran is better than EnGuide. These CLIR runs provide 71% to 88% of monolingual effectiveness for direct bilingual retrieval operations.

<table>
<thead>
<tr>
<th>MAP (relax)</th>
<th>Q^CL</th>
<th>Q^KE</th>
<th>Q^CE</th>
<th>Q^EK</th>
<th>Q^CEK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Queries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>.3799</td>
<td>.4512</td>
<td>.2879</td>
<td>.5361</td>
<td>.3598</td>
</tr>
<tr>
<td>pircs</td>
<td>.2673</td>
<td>.4042</td>
<td>.2879</td>
<td>.4934</td>
<td>.3598</td>
</tr>
<tr>
<td>%mono</td>
<td></td>
<td>=></td>
<td>71%</td>
<td>=></td>
<td>73%</td>
</tr>
<tr>
<td>Median</td>
<td>.2356</td>
<td>.3954</td>
<td>.2420</td>
<td>.4934</td>
<td>.2429</td>
</tr>
<tr>
<td>Description Queries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>.3880</td>
<td>.4368</td>
<td>.2829</td>
<td>.5097</td>
<td>.3566</td>
</tr>
<tr>
<td>pircs</td>
<td>.2761</td>
<td>.3876</td>
<td>.2829</td>
<td>.4049</td>
<td>.3566</td>
</tr>
<tr>
<td>%mono</td>
<td></td>
<td>=></td>
<td>73%</td>
<td>=></td>
<td>88%</td>
</tr>
<tr>
<td>Median</td>
<td>.2219</td>
<td>.3859</td>
<td>.2255</td>
<td>.3992</td>
<td>.2313</td>
</tr>
<tr>
<td>Description + Narrative Queries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>.3103</td>
<td>.4962</td>
<td>.2294</td>
<td>.6212</td>
<td>.0849</td>
</tr>
<tr>
<td>pircs</td>
<td></td>
<td></td>
<td>.5161</td>
<td></td>
<td>.3076</td>
</tr>
<tr>
<td>%mono</td>
<td></td>
<td>=></td>
<td>60%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>.2915</td>
<td>.4423</td>
<td>.1147</td>
<td>.5004</td>
<td>.0730</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAP (rigid)</th>
<th>Q^CL</th>
<th>Q^KE</th>
<th>Q^CE</th>
<th>Q^EK</th>
<th>Q^CEK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Queries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>.3146</td>
<td>.3576</td>
<td>.2380</td>
<td>.5078</td>
<td>.3331</td>
</tr>
<tr>
<td>pircs</td>
<td>.2097</td>
<td>.3175</td>
<td>.2380</td>
<td>.4588</td>
<td>.3331</td>
</tr>
<tr>
<td>%mono</td>
<td></td>
<td>=></td>
<td>75%</td>
<td>=></td>
<td>73%</td>
</tr>
<tr>
<td>Median</td>
<td>.1881</td>
<td>.3245</td>
<td>.1860</td>
<td>.4588</td>
<td>.2244</td>
</tr>
<tr>
<td>Description Queries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>.3255</td>
<td>.3469</td>
<td>.2238</td>
<td>.4685</td>
<td>.3249</td>
</tr>
<tr>
<td>pircs</td>
<td>.2150</td>
<td>.3055</td>
<td>.2238</td>
<td>.3777</td>
<td>.3249</td>
</tr>
<tr>
<td>%mono</td>
<td></td>
<td>=></td>
<td>73%</td>
<td>=></td>
<td>86%</td>
</tr>
<tr>
<td>Median</td>
<td>.1741</td>
<td>.3026</td>
<td>.1819</td>
<td>.3727</td>
<td>.2115</td>
</tr>
<tr>
<td>Description + Narrative Queries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>.2556</td>
<td>.4000</td>
<td>.1746</td>
<td>.5825</td>
<td>.0750</td>
</tr>
<tr>
<td>pircs</td>
<td></td>
<td></td>
<td>.4848</td>
<td></td>
<td>.2956</td>
</tr>
<tr>
<td>%mono</td>
<td></td>
<td>=></td>
<td>61%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>.2363</td>
<td>.3573</td>
<td>.0796</td>
<td>.4694</td>
<td>.0647</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a) Relax Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 7a,b: Comparison with Max and Median Results (=> means monolingual basis)</td>
</tr>
</tbody>
</table>

The MT software can also be chained to provide transitive translation via English as the pivot language. Results show that pivot Chinese-English-Korean bilingual retrieval can provide about 55% to 65% of monolingual effectiveness.

Our web-based entity/terminology-oriented translation is found effective, and can provide some 15% improvement in mean average precision.

In Korean retrieval, bigram provides better effectiveness than word indexing except in C-K runs where a query has a combination of 4 translations and random bigram noise may become an adverse factor.

In general, combination of their retrieval lists provides better effectiveness except for K-K title run.

Fig.7 summarizes our results compared to the official Max and Median of all submitted runs from participants.

Acknowledgment

This work was partially supported by a U.S. Govt. DST/ATP contract 2003*H532600*000.

References