Minimally Supervised Method for Multilingual Paraphrase Extraction from Definition Sentences on the Web

Yulan Yan∗ Chikara Hashimoto‡ Kentaro Torisawa§
Takao Kawai¶ Jun’ichi Kazama∥ Stijn De Saeger∗∗
∗‡§¶∥∗∗ Information Analysis Laboratory
Universal Communication Research Institute
National Institute of Information and Communications Technology (NICT)
{∗yulan, ‡ch, §torisawa, ∥stijn}@nict.go.jp

Abstract

We propose a minimally supervised method for multilingual paraphrase extraction from definition sentences on the Web. Hashimoto et al. (2011) extracted paraphrases from Japanese definition sentences on the Web, assuming that definition sentences defining the same concept tend to contain paraphrases. However, their method requires manually annotated data and is language dependent. We extend their framework and develop a minimally supervised method applicable to multiple languages. Our experiments show that our method is comparable to Hashimoto et al.’s for Japanese and outperforms previous unsupervised methods for English, Japanese, and Chinese, and that our method extracts 10,000 paraphrases with 92% precision for English, 82.5% precision for Japanese, and 82% precision for Chinese.

1 Introduction

Automatic paraphrasing has been recognized as an important component for NLP systems, and many methods have been proposed to acquire paraphrase knowledge (Lin and Pantel, 2001; Barzilay and McKeown, 2001; Shinyama et al., 2002; Barzilay and Lee, 2003; Dolan et al., 2004; Callison-Burch, 2008; Hashimoto et al., 2011; Fujita et al., 2012).

We propose a minimally supervised method for multilingual paraphrase extraction. Hashimoto et al. (2011) developed a method to extract paraphrases from definition sentences on the Web, based on their observation that definition sentences defining the same concept tend to contain many paraphrases. Their method consists of two steps; they extract definition sentences from the Web, and extract phrasal paraphrases from the definition sentences. Both steps require supervised classifiers trained by manually annotated data, and heavily depend on their target language. However, the basic idea is actually language-independent. Figure 1 gives examples of definition sentences on the Web that define the same concept in English, Japanese, and Chinese (with English translation). As indicated by underlines, each definition pair has a phrasal paraphrase.

We aim at extending Hashimoto et al.’s method to a minimally supervised method, thereby enabling acquisition of phrasal paraphrases within one language, but in different languages without manually annotated data. The first contribution of our work is to develop a minimally supervised method for multilingual definition extraction that uses a classifier distinguishing definition from non-definition. The classifier is learnt from the first sentences in

Figure 1: Multilingual definition pairs on “paraphrasing.”
Wikipedia articles, which can be regarded as the definition of the title of Wikipedia article (Kazama and Torisawa, 2007) and hence can be used as positive examples. Our method relies on a POS tagger, a dependency parser, a NER tool, noun phrase chunking rules, and frequency thresholds for each language, in addition to Wikipedia articles, which can be seen as a manually annotated knowledge base. However, our method needs no additional manual annotation particularly for this task and thus we categorize our method as a minimally supervised method. On the other hand, Hashimoto et al.’s method heavily depends on the properties of Japanese like the assumption that characteristic expressions of definition sentences tend to appear at the end of sentence in Japanese. We show that our method is applicable to English, Japanese, and Chinese, and that its performance is comparable to state-of-the-art supervised methods (Navigli and Velardi, 2010). Since the three languages are very different we believe that our definition extraction method is applicable to any language as long as Wikipedia articles of the language exist.

The second contribution of our work is to develop a minimally supervised method for multilingual paraphrase extraction from definition sentences. Again, Hashimoto et al.’s method utilizes a supervised classifier trained with annotated data particularly prepared for this task. We eliminate the need for annotation and instead introduce a method that uses a novel similarity measure considering the occurrence of phrase fragments in global contexts. Our paraphrase extraction method is mostly language-independent and, through experiments for the three languages, we show that it outperforms unsupervised methods (Pašca and Dienes, 2005; Koehn et al., 2007) and is comparable to Hashimoto et al.’s supervised method for Japanese.

Previous methods for paraphrase (and entailment) extraction can be classified into a distributional similarity based approach (Lin and Pantel, 2001; Gelfet and Dagan, 2005; Bhagat et al., 2007; Szpektor and Dagan, 2008; Hashimoto et al., 2009) and a parallel corpus based approach (Barzilay and McKeown, 2001; Shinyama et al., 2002; Barzilay and Lee, 2003; Dolan et al., 2004; Callison-Burch, 2008). The former can exploit large scale monolingual corpora, but is known to be unable to distinguish paraphrase pairs from antonymous pairs (Lin et al., 2003). The latter rarely mistakes antonymous pairs for paraphrases, but preparing parallel corpora is expensive. As with Hashimoto et al. (2011), our method is a kind of parallel corpus approach in that it uses definition pairs as a parallel corpus. However, our method does not suffer from a high labor cost of preparing parallel corpora, since it can automatically collect definition pairs from the Web on a large scale. The difference between ours and Hashimoto et al.’s is that our method requires no manual labeling of data and is mostly language-independent.

2 Proposed Method

Our method first extracts definition sentences from the Web, and then extracts paraphrases from the definition sentences, as illustrated in Figure 2.

2.1 Definition Extraction

2.1.1 Automatic Construction of Training Data

Our method learns a classifier that classifies sentences into definition and non-definition using automatically constructed training data, TrDat. TrDat’s positive examples, Pos, are the first sentences of Wikipedia articles and the negative examples, Neg, are randomly sampled Web sentences. The former can be seen as definition, while the chance that the sentences in the latter are definition is quite small.

Our definition extraction not only distinguishes definition from non-definition but also identifies the defined term of a definition sentence, and in the paraphrase extraction step our method couples two definition sentences if their defined terms are identical. For example, the defined terms of (1a) and (1b) in Figure 1 are both “Paraphrasing” and thus the two definition sentences are coupled. For Pos, we mark up the title of Wikipedia article as the defined term. For Neg, we randomly select a noun phrase in a sen-

<table>
<thead>
<tr>
<th>N-gram definition pattern</th>
<th>N-gram non-definition pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) [term] is the [term] may be [term] is not</td>
<td></td>
</tr>
<tr>
<td>Subsequence definition pattern</td>
<td>Subsequence non-definition pattern</td>
</tr>
<tr>
<td>(B) [term] is * which is located you may [term] [term] is a type of</td>
<td></td>
</tr>
<tr>
<td>Subtree definition pattern</td>
<td>Subtree non-definition pattern</td>
</tr>
<tr>
<td>(C) [term] is defined as the NP [term] will not be</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Examples of English patterns.

2.1.2 Feature Extraction and Learning

As features, we use patterns that are characteristic of definition (definition patterns) and those that are unlikely to be a part of definition (non-definition patterns). Patterns are either N-grams, subsequences, or dependency subtrees, and are mined automatically from TrDat. Table 1 shows examples of patterns mined by our method. In (A) of Table 1, “-” is a symbol representing the beginning of a sentence. In (B), “*” represents a wildcard that matches any number of arbitrary words. Patterns are represented by either their words’ surface form, base form, or POS. (Chinese words do not inflect and thus we do not use the base form for Chinese.)

We assume that definition patterns are frequent in Pos but are infrequent in Neg, and non-definition patterns are frequent in Neg but are infrequent in Pos. To see if a given pattern \(\phi \) is likely to be a definition pattern, we measure \(\phi \)’s probability rate \(\text{Rate}(\phi) \). If the probability rate of \(\phi \) is large, \(\phi \) tends to be a definition pattern. The probability rate of \(\phi \) is:

\[
\text{Rate}(\phi) = \frac{\text{freq}(\phi, \text{Pos})/|\text{Pos}|}{\text{freq}(\phi, \text{Neg})/|\text{Neg}|}, \text{if } \text{freq}(\phi, \text{Neg}) \neq 0.
\]

Here, \(\text{freq}(\phi, \text{Pos}) = |\{s \in \text{Pos} : \phi \subseteq s\}| \) and \(\text{freq}(\phi, \text{Neg}) = |\{s \in \text{Neg} : \phi \subseteq s\}| \). We write \(\phi \subseteq s \) if sentence \(s \) contains \(\phi \). If \(\text{freq}(\phi, \text{Neg}) = 0 \), \(\text{Rate}(\phi) \) is set to the largest value of all the patterns’ \(\text{Rate} \) values. Only patterns whose \(\text{Rate} \) is more than or equal to a \(\text{Rate} \) threshold \(\rho_{\text{pos}} \) and whose \(\text{freq}(\phi, \text{Pos}) \) is more than or equal to a frequency threshold are regarded as definition patterns. Similarly, we check if \(\phi \) is likely to be a non-definition pattern. Only patterns whose \(\text{Rate} \) is less or equal to a \(\text{Rate} \) threshold \(\rho_{\text{neg}} \) and whose \(\text{freq}(\phi, \text{Neg}) \) is more than or equal to a frequency threshold are regarded as non-definition patterns. The probability rate is based on the growth rate (Dong and Li, 1999).

\(\rho_{\text{pos}} \) and \(\rho_{\text{neg}} \) are set to 2 and 0.5, while the frequency threshold is set differently according to languages, pattern types (N-gram, subsequence, and subtree), representation (surface, base, and POS), and data (Pos and Neg), as in Table 2. The thresholds in Table 2 were determined manually, but not really arbitrarily. Basically they were determined according to the frequency of each pattern in our data (e.g. how frequently the surface N-gram of English appears in English positive training samples (Pos)).

Below, we detail how patterns are acquired. First, we acquire N-gram patterns. Then, subsequence patterns are acquired using the N-gram patterns as input. Finally, subtree patterns are acquired using the subsequence patterns as input.

N-gram patterns We collect N-gram patterns from TrDat with N ranging from 2 to 6. We filter out N-grams using thresholds on the \(\text{Rate} \) and frequency, and regard those that are kept as definition or non-definition N-grams.

Subsequence patterns We generate subsequence patterns as ordered combinations of N-grams with the wild card “*” inserted between them (we use two or three N-grams for a subsequence). Then, we check each of the generated subsequences and keep it if there exists a sentence in TrDat that contains the subsequence and whose root node is contained in the subsequence. For example, subsequence “[term] is a * in the” is kept if a term-marked sentence like “[term] is a baseball player in the Dominican Republic.” exists in TrDat. Then, patterns are filtered.
out using thresholds on the Rate and frequency as we did for N-grams.

Subtree patterns For each definition and non-definition subsequence, we retrieve all the term-marked sentences that contain the subsequence from *TrDat*, and extract a minimal dependency subtree that covers all the words of the subsequence from each retrieved sentence. For example, assume that we retrieve a term-marked sentence “*[term]* is usually defined as the way of life of a group of people.” for subsequence “*[term]* is * defined as the”. Then we extract from the sentence the minimal dependency subtree in the left side of (C) of Table 1. Note that all the words of the subsequence are contained in the subtree, and that in the subtree a node (“way”) that is not a part of the subsequence is replaced with its dependency label (“NP”) assigned by the dependency parser. The patterns are filtered out using thresholds on the Rate and frequency.

We train a SVM classifier\(^1\) with a linear kernel, using binary features that indicate the occurrence of the patterns described above in a target sentence.

In theory, we could feed all the features to the SVM classifier and let the classifier pick informative features. But we restricted the feature set for practical reasons: the number of features would become tremendously large. There are two reasons for this. First, the number of sentences in our automatically acquired training data is huge (2,439,257 positive sentences plus 5,000,000 negative sentences for English, 703,208 positive sentences plus 1,400,000 negative sentences for Japanese and 310,072 positive sentences plus 600,000 negative sentences for Chinese). Second, since each subsequence pattern is generated as a combination of two or three N-gram patterns and one subsequence pattern can generate one or more subtree patterns, using all possible features leads to a combinatorial explosion of features. Moreover, since the feature vector will be highly sparse with a huge number of infrequent features, SVM learning becomes very time consuming. In preliminary experiments we observed that when using all possible features the learning process took more than one week for each language. We therefore introduced the current feature selection method, in which the learning process finished in one day but still obtains good results.

2.1.3 Definition Extraction from the Web

We extract a large amount of definition sentences by applying this classifier to sentences in our Web archive. Because our classifier requires term-marked sentences (sentences in which the term being defined is marked) as input, we first have to identify all such defined term candidates for each sentence. For example, Figure 3 shows a case where a Web sentence has two NPs (two candidates of defined term). Basically we pick up NPs in a sentence by simple heuristic rules. For English, NPs are identified using TreeTagger (Schmid, 1995) and two NPs are merged into one when they are connected by “for” or “of”. After applying this procedure recursively, the longest NPs are regarded as candidates of defined terms and term-marked sentences are generated. For Japanese, we first identify nouns that are optionally modified by adjectives as NPs, and allow two NPs connected by “の” (of), if any, to form a larger NP. For Chinese, nouns that are optionally modified by adjectives are considered as NPs.

Then, each term-marked sentence is given a feature vector and classified by the classifier. The term-marked sentence whose SVM score (the distance from the hyperplane) is the largest among those from the same original Web sentence is chosen as the final classification result for the original Web sentence.

2.2 Paraphrase Extraction

We use all the Web sentences classified as definition and all the sentences in Pos for paraphrase extraction. First, we couple two definition sentences whose defined term is the same. We filter out definition sentence pairs whose cosine similarity of content word vectors is less than or equal to threshold \(C\), which is set to 0.1. Then, we extract phrases from each definition sentence, and generate all possible phrase pairs from the coupled sentences. In this study, phrases are restricted to predicate phrases that consist of at least one dependency relation and in which all the constituents are consecutive in a

\(^1\)http://svmlight.joachims.org.
The ratio of the number of words shared between two candidate phrases to the number of all of the words in the two phrases. Words are represented by either their surface form \(f_{1,1} \), base form \(f_{2,2} \) or POS \(f_{3,2} \).

The identity of the leftmost word (surface form \(f_{4,1} \), base form \(f_{3,2} \) or POS \(f_{3,2} \)) between two candidate phrases.

The same as \(f_3 \) except that we use the rightmost word. There are three corresponding subfunctions \(f_{3,1} \) to \(f_{3,3} \).

The ratio of the number of words that appear in a candidate phrase segment of a definition sentence \(s_1 \) and in a segment that is NOT a part of the candidate phrase of another definition sentence \(s_2 \) to the number of all the words of \(s_1 \)’s candidate phrase. Words are in their base form \(f_{4,3} \).

The reversed \(s_1 \leftarrow s_2 \) version of \(f_{4,3} \).

The ratio of the number of words (the surface form) of a shorter candidate phrase to that of a longer one \(f_{5,3} \).

Cosine similarity between two definition sentences from which two candidate phrases are extracted. Only content words in the base form are used \(f_{6,1} \).

The ratio of the number of parent dependency subtrees that are shared by two candidate phrases to the number of all the parent dependency subtrees. The parent dependency subtrees are adjacent to the candidate phrases and represented by their surface form \(f_{7,3} \), base form \(f_{3,2} \) or POS \(f_{3,2} \).

The same as \(f_8 \) except that we use child dependency subtrees. There are 3 subfunctions \(f_{9,3} \) to \(f_{9,3} \) of \(f_8 \) type.

The ratio of the number of context N-grams that are shared by two candidate phrases to the number of all the context N-grams of both candidate phrases. The context N-grams are adjacent to the candidate phrases and represented by either the surface form, the base form, or POS. The N ranges from 1 to 3, and the context is either left-side or right-side. Thus, there are 18 subfunctions \(3 \times 3 \times 2 \).

Table 3: Local similarity subfunctions, \(f_{1,1} \) to \(f_{10,18} \).

Global similarity The global similarity (globalSim) is our novel similarity function. We decompose a candidate phrase pair \((p_1, p_2) \) into Comm, the common part between \(p_1 \) and \(p_2 \), and Diff, the difference between the two. For example, Comm and Diff of (“keep the meaning intact”, “preserve the meaning”) is (“the meaning”) and (“keep, intact”, “preserve”).

globalSim measures the semantic similarity of the Diff of a phrase pair. It is proposed based on the following intuition: phrase pair \((p_1, p_2) \) tend to be a paraphrase if their surface difference (i.e., Diff) have the same meaning. For example, if “keep, intact” and “preserve” mean the same, then (“keep the meaning intact”, “preserve the meaning”) is a paraphrase.

globalSim considers the occurrence of Diff in global contexts (i.e., all the paraphrase candidates from all the definition pairs). The globalSim of a given phrase pair \((p_1, p_2) \) is measured by basically counting how many times the Diff of \((p_1, p_2) \) appears in all the candidate phrase pairs from all the definition pairs. The assumption is that Diff tends to share the same meaning if it appears repeatedly in paraphrase candidates from all definition sentence pairs, i.e., our parallel corpus. Each occurrence of Diff is weighted by the localSim of the phrase pair in which Diff occurs. Precisely, globalSim is defined as:

\[
\text{globalSim}(p_1, p_2) = \max_{(d_1, d_m) \in DP(p_1, p_2)} l_s(p_1, p_2, d_1, d_m).
\]

Here, \(l_s(p_1, p_2, d_1, d_m) = \sum_{i=1}^{10} \sum_{j=1}^{k_i} w_{i,j} \times f_{i,j}(p_1, p_2, d_1, d_m) \).

\(DP(p_1, p_2) \) is the set of all definition sentence pairs that contain \((p_1, p_2) \). \((d_1, d_m) \) is a definition sentence pair containing \((p_1, p_2) \). \(k_i \) is the number of subfunctions of \(f_i \) type. \(w_{i,j} \) is the weight for \(f_{i,j} \). \(w_{i,j} \) is uniformly set to 1 except for \(f_4,1 \) and \(f_5,1 \), whose weight is set to \(-1\) since they indicate the unlikelihood of \((p_1, p_2)\)’s being a paraphrase. As the formula indicates, if there is more than one definition sentence pair that contains \((p_1, p_2)\), localSim is calculated from the definition sentence pair that gives the maximum value of \(l_s(p_1, p_2, d_1, d_m) \). localSim is local in the sense that it is calculated based on only one definition pair from which \((p_1, p_2)\) are extracted.
3.1 Experiments of Definition Extraction

We show that our unsupervised definition extraction method is competitive with state-of-the-art supervised methods for English (Navigli and Velardi, 2010), and that it extracts a large number of definitions reasonably accurately for English (3,216,121 definitions with 70% precision), Japanese (651,293 definitions with 62.5% precision), and Chinese (682,661 definitions with 67% precision).

3.1.1 Preparing Corpora

First we describe Pos, Neg, and the Web corpus from which definition sentences are extracted. As the source of Pos, we used the English Wikipedia of April 2011 (3,620,149 articles), the Japanese Wikipedia of October 2011 (830,417 articles), and the Chinese Wikipedia of August 2011 (365,545 articles). We removed category articles, template articles, list articles and so on from them. Then the number of sentences of Pos was 2,439,257 for English, 703,208 for Japanese, and 310,072 for Chinese. We verified our assumption that Wikipedia first sentences can mostly be seen as definition by manually checking 200 random samples from Pos. 96.5% of English Pos, 100% of Japanese Pos, and 99.5% of Chinese Pos were definitions.

As the source of Neg, we used 600 million Japanese Web pages (Akamine et al., 2010) and the ClueWeb09 corpus for English (about 504 million pages) and Chinese (about 177 million pages). From each Web corpus, we collected the sentences satisfying following conditions: 1) they contain 5 to 50 words and at least one verb, 2) less than half of their words are numbers, and 3) they end with a period. Then we randomly sampled sentences from the collected sentences as Neg so that |Neg| was about twice as large as |Pos|: 5,000,000 for English, 1,400,000 for Japanese, and 600,000 for Chinese.

In Section 3.1.3, we use 10% of the Web corpus as the input to the definition classifier. The number of sentences are 294,844,141 for English, 245,537,860 for Japanese, and 68,653,130 for Chinese.

All the sentences were POS-tagged and parsed. We used TreeTagger and MSTParser (McDonald et al., 2006) for English, JUMAN (Kurohashi and Kawahara, 2009a) and KNP (Kurohashi and Kawahara, 2009b) for Japanese, MMA (Kruengkrai et al., 2009) and CNP (Chen et al., 2009) for Chinese.

3.1.2 Comparison with Previous Methods

We compared our method with the state-of-the-art supervised methods proposed by Navigli and Velardi (2010), using their WCL datasets v1.0 (http://lcl.uniroma1.it/wcl/), definition and non-definition datasets for English (Navigli et al., 2010). Specifically, we used its training data (TrDatwcl, hereafter), which consisted of 1,908 definition and

2If there are more than one \((p_i, p_j)\) in a definition pair, we use only one of them that has the largest localSim value.

3Although we claim that our idea of using globalSim is effective, we do not claim that the above formula for calculating is the optimal way to implement the idea. Currently we are investigating a more mathematically well-motivated model.

Table 4: Language-dependent components.

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold</td>
<td>The frequency threshold of Table 2 (Section 2.1.2).</td>
</tr>
<tr>
<td>NP rule</td>
<td>Rules for identifying NPs in sentences (Section 2.1.3).</td>
</tr>
<tr>
<td>POS list</td>
<td>The list of content words’ POS (Section 2.2).</td>
</tr>
<tr>
<td>Tagger/parser</td>
<td>POS taggers, dependency parsers and NER tools.</td>
</tr>
</tbody>
</table>

\[
globalSim(p_1, p_2) = \frac{\sum_{(p_i, p_j) \in PP(p_1, p_2)} localSim(p_i, p_j)}{M}.
\]

\[PP(p_1, p_2) \text{ is the set of candidate phrase pairs whose } Diff \text{ is the same as } (p_1, p_2).^2 \]

\[M \text{ is the number of similarity subfunction types whose weight is } 1, \text{ i.e. } M = 8 \text{ (all the subfunction types except } f_1 \text{ and } f_2). \]

\[globalSim \text{ is global in the sense that it considers all the definition pairs that have a phrase pair with the same } Diff \text{ as a target candidate phrase pair } (p_1, p_2).\]

The final score for a candidate phrase pair is:

\[Score(p_1, p_2) = localSim(p_1, p_2) + \ln globalSim(p_1, p_2).\]
<table>
<thead>
<tr>
<th>Method</th>
<th>Precision</th>
<th>Recall</th>
<th>F1</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed def</td>
<td>86.79</td>
<td>86.97</td>
<td>86.88</td>
<td>89.18</td>
</tr>
<tr>
<td>WCL-1</td>
<td>99.88</td>
<td>42.09</td>
<td>59.22</td>
<td>76.06</td>
</tr>
<tr>
<td>WCL-3</td>
<td>98.81</td>
<td>60.74</td>
<td>75.23</td>
<td>83.48</td>
</tr>
</tbody>
</table>

Table 5: Definition classification results on $TrDat_{wcl}$.

2,711 non-definition sentences, and compared the following three methods. WCL-1 and WCL-3 are methods proposed by Navigli and Velardi (2010). They were trained and tested with 10 fold cross validation using $TrDat_{wcl}$. Proposed def is our method, which used $TrDat$ for acquiring patterns (Section 2.1.2) and training. We tested Proposed def on each of $TrDat_{wcl}$’s 10 folds and averaged the results. Note that, for Proposed def, we removed sentences in $TrDat_{wcl}$ from $TrDat$ in advance for fairness. Table 5 shows the results. The numbers for WCL-1 and WCL-3 are taken from Navigli and Velardi (2010). Proposed def outperformed both methods in terms of recall, F1, and accuracy. Thus, we conclude that Proposed def is comparable to WCL-1/WCL-3.

We conducted ablation tests of our method to investigate the effectiveness of each type of pattern. When using only N-grams, F1 was 85.41. When using N-grams and subsequences, F1 was 86.61. When using N-grams and subtrees, F1 was 86.85. When using all the features, F1 was 86.88. The results show that each type of patterns contribute to the performance, but the contributions of subsequence patterns and subtree patterns do not seem very significant.

3.1.3 Experiments of Definition Extraction

We extracted definitions from 10% of the Web corpus. We applied Proposed def to the corpus of each language, and the state-of-the-art supervised method for Japanese (Hashimoto et al., 2011) ($Hashi_{def}$, hereafter) to the Japanese corpus. $Hashi_{def}$ was trained on their training data that consisted of 2,911 sentences, 61.1% of which were definitions. Note that we removed sentences in $TrDat$ from 10% of the Web corpus in advance, while we did not remove Hashimoto et al.’s training data from the corpus. This means that, for $Hashi_{def}$, the training data is included in the test data.

For each method, we filtered out its positive outputs whose defined term appeared more than 1,000 times in 10% of the Web corpus, since those terms tend to be too vague to be a defined term or refer to an entity outside the definition sentence. For example, if “the college” appears more than 1,000 times in 10% of the corpus, we filter out sentences like “The college is one of three colleges in the Coast Community College District and was founded in 1947.” For Proposed def, the number of remaining positive outputs is 3,216,121 for English, 651,293 for Japanese, and 682,661 for Chinese. For $Hashi_{def}$, the number of positive outputs is 523,882.

For Proposed def of each language, we randomly sampled 200 sentences from the remaining positive outputs. For $Hashi_{def}$, we first sorted its output by the SVM score in descending order and then randomly sampled 200 from the top 651,293, i.e., the same number as the remaining positive outputs of Proposed def of Japanese, out of all the remaining sentences of $Hashi_{def}$.

For each language, after shuffling all the samples, two human annotators evaluated each sample. The annotators for English and Japanese were not the authors, while one of the Chinese annotators was one of the authors. We regarded a sample as a definition if it was regarded as a definition by both annotators. Cohen’s kappa (Cohen, 1960) was 0.55 for English (moderate agreement (Landis and Koch, 1977)), 0.73 for Japanese (substantial agreement), and 0.69 for Chinese (substantial agreement).

For English, Proposed def achieved 70% precision for the 200 samples. For Japanese, Proposed def achieved 62.5% precision for the 200 samples, while $Hashi_{def}$ achieved 70% precision for the 200 samples. For Chinese, Proposed def achieved 67% precision for the 200 samples. From these results, we conclude that Proposed def can extract a large number of definition sentences from the Web moderately well for the three languages.

Although the precision is not very high, our experiments in the next section show that we can still extract a large number of paraphrases with high precision from these definition sentences, due mainly to our similarity measures, localSim and globalSim.

3.2 Experiments of Paraphrase Extraction

We show (1) that our paraphrase extraction method outperforms unsupervised methods for the three languages, (2) that globalSim is effective, and (3) that our method is comparable to the state-of-the-art su-
Proposed\textsubscript{Score}: Our method. Outputs are ranked by Score.
Proposed\textsubscript{local} 5: This is the same as Proposed\textsubscript{Score} except that it ranks outputs by localSim. The performance drop from Proposed\textsubscript{Score} shows globalSim’s effectiveness.
Hashi\textsubscript{sup}: Hashimoto et al.’s supervised method. Training data is the same as Hashimoto et al. Outputs are ranked by the SVM score (the distance from the hyperplane). This is for Japanese only.
Hashi\textsubscript{uns}: The unsupervised version of Hashi\textsubscript{sup}. Outputs are ranked by the sum of feature values. Japanese only.
SMT: The phrase table construction method of Moses (Koehn et al., 2007). We assume that Moses should extract a set of two phrases that are paraphrases of each other, if we input monolingual parallel sentence pairs like our definition pairs. We used default values for all the parameters. Outputs are ranked by the product of two phrase translation probabilities of both directions.
P&D: The distributional similarity based method by Pasca and Dienes (2005) (their “N-gram-Only” method). Outputs are ranked by the number of contexts two phrases share. Following Pasca and Dienes (2005), we used the parameters $LC = 3$ and $MaxP = 4$, while $MinP$, which was 1 in Pasca and Dienes (2005), was set to 2 since our target was phrasal paraphrases.

Table 6: Evaluated paraphrase extraction methods.

5We filtered out phrase pairs in which one phrase contained a named entity but the other did not contain the named entity from the output of Proposed\textsubscript{score}, Proposed\textsubscript{local}, SMT, and P&D, since most of them were not paraphrases. We used Stanford NER (Finkel et al., 2005) for English named entity recognition (NER), KNP for Japanese NER, and BaseNER (Zhao and Kit, 2008) for Chinese NER. Hashi\textsubscript{sup} and Hashi\textsubscript{uns} did the named entity filtering of the same kind (footnote 3 of Hashimoto et al. (2011)), and thus we did not apply the filter to them any further.

and 0.85 for Chinese, all of which indicated reasonably good (Landis and Koch, 1977). We regarded a candidate phrase pair as a paraphrase if both annotators regarded it as a paraphrase.

Exp1 We compared the methods that take definition pairs as input, i.e. Proposed\textsubscript{Score}, Proposed\textsubscript{local}, Hashi\textsubscript{sup}, Hashi\textsubscript{uns}, and SMT. We randomly sampled 200 phrase pairs from the top 10,000 for each method for evaluation. The evaluation of each candidate phrase pair (p_1, p_2) was based on bidirectional checking of entailment relation, $p_1 \rightarrow p_2$ and $p_2 \rightarrow p_1$, with p_1 and p_2 embedded in contexts, as Hashimoto et al. (2011) did. Entailment relation of both directions hold if (p_1, p_2) is a paraphrase. We used definition pairs from which candidate phrase pairs were extracted as contexts.

Exp2 We compared Proposed\textsubscript{Score} and P&D. Since P&D restricted its output to phrase pairs in which each phrase consists of two to four words, we restricted the output of Proposed\textsubscript{Score} to 2-to-4-words phrase pairs, too. We randomly sampled 200 from the top 3,000 phrase pairs from each method for evaluation, and the annotators checked entailment relation of both directions between two phrases using Web sentence pairs that contained the two phrases as contexts.

3.2.2 Results

From Exp1, we obtained precision curves in the upper half of Figure 4. The curves were drawn from the 200 samples that were sorted in descending order by their score, and we plotted a dot for every 5 samples. Proposed\textsubscript{Score} outperformed Proposed\textsubscript{local} for the three languages, and thus globalSim was effective. Proposed\textsubscript{Score} outperformed Hashi\textsubscript{sup}. However, we observed that Proposed\textsubscript{Score} acquired many candidate phrase pairs (p_1, p_2) for which p_1 and p_2 consisted of the same content words like “send a postcard to the author” and “send the author a postcard,” while the other methods tended to acquire more content word variations like “have a chance” and “have an opportunity.” Then we evaluated all the methods in terms of how many paraphrases with content word variations were extracted. We extracted from the evaluation samples only candidate phrase pairs whose Diff contained a content word (content word variation pairs), to see how many
of them were paraphrases. The lower half of Figure 4 shows the results (curves labeled with \texttt{cwv}). The number of samples for \texttt{ProposedScore} reduced drastically compared to the others for English and Japanese, though precision was kept at a high level. It is due mainly to the \texttt{globalSim}; the \texttt{Diff} of the non-content word variation pairs appears frequently in paraphrase candidates, and thus their \texttt{globalSim} scores are high.

From \textit{Exp2}, precision curves in Figure 5 were obtained. \texttt{P&D} acquired more content word variation pairs as the curves labeled by \texttt{cwv} indicates. However, \texttt{ProposedScore}'s precision outperformed \texttt{P&D}'s by a large margin for the three languages.

From all of these results, we conclude (1) that our paraphrase extraction method outperforms unsupervised methods for the three languages, (2) that \texttt{globalSim} is effective, and (3) that our method is comparable to the state-of-the-art supervised method for Japanese, though our method tends to extract fewer content word variation pairs than the others.

Table 7 shows examples of English paraphrases extracted by \texttt{ProposedScore}.

<table>
<thead>
<tr>
<th>Example of English paraphrases extracted by \texttt{ProposedScore}</th>
</tr>
</thead>
<tbody>
<tr>
<td>is based in Halifax = is headquartered in Halifax</td>
</tr>
<tr>
<td>used for treating HIV = used to treat HIV</td>
</tr>
<tr>
<td>is a rare form = is an uncommon type</td>
</tr>
<tr>
<td>is a set = is an unordered collection</td>
</tr>
<tr>
<td>has an important role = plays a key role</td>
</tr>
</tbody>
</table>

Table 7: Examples of extracted English paraphrases.

4 Conclusion

We proposed a minimally supervised method for multilingual paraphrase extraction. Our experiments showed that our paraphrase extraction method outperforms unsupervised methods (Pašca and Dienes, 2005; Koehn et al., 2007; Hashimoto et al., 2011) for English, Japanese, and Chinese, and is comparable to the state-of-the-art language dependent supervised method for Japanese (Hashimoto et al., 2011).
References

