Current machine translation systems in Japan

1. Name of project
 LAMB

2. Name of organization and contact address
 1) Name of organization
 CANON INC. Information Systems Research Center
 2) Contact address
 YOICHI KAWABATA
 9-1, Shimomaruko 2-Chome, Ohta-ku, Tokyo 146, Japan
 Phone: Tokyo (03) 758-2101

3. Current status of the system
 For research

4. Feature of the system
 Knowledge-based machine translation

5. Translated language
 Japanese to English

6. Strategy on translation
 1) Type of grammar for analysis and generation
 Phrase structure grammar
 2) Translation processes
 Tree-to-tree transformations

7. Dictionaries
 1) Structure
 - Japanese analysis dictionary
 - Transfer dictionary
 - English generation dictionary
 - Domain knowledge dictionary
 2) Size
 2000 words

8. Equipment
 1) Implementation language : Symbolics Common Lisp
 2) Operating system : Symbolics OS release 6.1
 3) Type of CPU : Symbolics 3620

9. Performance
 Translation speed : 1000 words/hour

10. Facilities
 1) Dictionary and grammar development environment
 2) Testing tool
<table>
<thead>
<tr>
<th></th>
<th>ATLAS-I</th>
<th>ATLAS-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Name of system</td>
<td>(Automatic Translation System-I)</td>
<td>(Automatic Translation System-II)</td>
</tr>
<tr>
<td>2) Name of Organization</td>
<td>FUJITSU, LTD.</td>
<td></td>
</tr>
<tr>
<td>(Contact address)</td>
<td>1-6-1, Marunouchi, Chiyoda-ku, Tokyo 100</td>
<td></td>
</tr>
<tr>
<td>3) Current status</td>
<td>Commercial (Program product)</td>
<td></td>
</tr>
<tr>
<td>4) Features of the system</td>
<td>Syntax direct approach using semantic features</td>
<td>Semantic transfer approach using world model and language model</td>
</tr>
<tr>
<td>5) Language translated</td>
<td>English to Japanese</td>
<td>Japanese to English</td>
</tr>
<tr>
<td>6) Translation strategies</td>
<td>Phase structure grammar</td>
<td>Dependency grammar</td>
</tr>
<tr>
<td>· Type of grammar for analysis and generation</td>
<td>(1) Morphological analysis</td>
<td>(1) Morphological analysis</td>
</tr>
<tr>
<td>· Translation process</td>
<td>(2) Applied grammar</td>
<td>(2) Syntax and semantic analysis</td>
</tr>
<tr>
<td></td>
<td>(3) Morphological generation</td>
<td>(3) Conceptual transfer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) Syntax and morphological generation</td>
</tr>
<tr>
<td>7) Dictionaries</td>
<td>English-Japanese dictionary</td>
<td>Japanese dictionary</td>
</tr>
<tr>
<td>· Structure</td>
<td>Basic dictionary</td>
<td>English dictionary</td>
</tr>
<tr>
<td>· Size</td>
<td>--- 53,000 words</td>
<td>--- 50,000 words</td>
</tr>
<tr>
<td></td>
<td>Technical term dictionary</td>
<td>Technical term dictionary</td>
</tr>
<tr>
<td></td>
<td>--- 250,000 words</td>
<td>--- 250,000 words</td>
</tr>
<tr>
<td>8) Equipment</td>
<td>Assembler</td>
<td>C</td>
</tr>
<tr>
<td>· Implementation language</td>
<td>OSIV/F4/MSP, OVIS/S,</td>
<td>OSIV/F4/MSP</td>
</tr>
<tr>
<td>· Operating system</td>
<td>OSIV/F4/FSP,</td>
<td></td>
</tr>
<tr>
<td>· Type of CPU</td>
<td>FACOM M series computer</td>
<td>FACOM M series computer</td>
</tr>
<tr>
<td></td>
<td>FACOM S-3000 series computer</td>
<td></td>
</tr>
<tr>
<td>9) Performance</td>
<td>60,000 words/hour</td>
<td>60,000 words/hour</td>
</tr>
<tr>
<td>· Translation speed</td>
<td>(CPU: FACOM M380)</td>
<td>(CPU: FACOM M380)</td>
</tr>
<tr>
<td>10) Facilities</td>
<td>Bilingual editor</td>
<td>Bilingual editor</td>
</tr>
<tr>
<td></td>
<td>Dictionary editor</td>
<td>Dictionary editor</td>
</tr>
<tr>
<td>1) Name of system</td>
<td>HICATS / JE</td>
<td>HICATS / EJ</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>(Hitachi Computer Aided Translation System / Japanese to English)</td>
<td>(Hitachi Computer Aided Translation System / English to Japanese)</td>
<td></td>
</tr>
</tbody>
</table>

| 2) Name of Organization (Contact address) | Hitachi, Ltd. Computer Group, Hitachi, Ltd. Hitachi Omori 2nd Bldg., 6-27-18, Minami-Oi, Shinagawa-ku, Tokyo 140, Japan |

| 3) Current status | Commercial (Program product) |

| 4) Feature of the system | Semantic transfer based on Conceptual Dependency Diagram | Syntactic transfer using co-occurrence relations |

| 5) Translated language | Japanese to English | English to Japanese |

| 6) Strategies on translation | Dependency grammar Phrase structure grammar Case phrase structure grammar (1) Morphological analysis (2) Syntactic/semantic analysis (3) Transformation of Conceptual Dependency Diagram (4) Syntactic generation (5) Morphological synthesis approx. 5,000 | Phrase structure grammar Case phrase structure grammar (1) Morphological analysis (2) Syntactic analysis (3) Co-occurrence relation checking (4) Syntactic transfer (5) Case phrase structure generation (6) Morphological synthesis approx. 2,000 |

<table>
<thead>
<tr>
<th>- Analysis grammar</th>
<th>- Generation grammar</th>
<th>- Translation processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Number of rules</td>
<td>(1) Morphological analysis (2) Syntactic/semantic analysis (3) Transformation of Conceptual Dependency Diagram (4) Syntactic generation (5) Morphological synthesis approx. 5,000</td>
<td></td>
</tr>
</tbody>
</table>

| 7) Dictionaries | Basic dictionary --- 50,000 words Technical term dictionary (option) --- 250,000 words User dictionary |

| 8) Equipment | GDL (Grammar Description Language) and PL/I VOS3 (Virtual-storage Operating System 3) HITAC M series computers |

<table>
<thead>
<tr>
<th>9) Performance</th>
<th>Translation speed</th>
<th>Translation cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>20,000-60,000 words/hour (CPU: HITAC M-680) depends on operational environments</td>
<td>30,000-60,000 words/hour (CPU: HITAC M-680) depends on operational environments</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10) Facilities</th>
<th>Dependency specification Selection of alternative sentence structure Alternative word selection</th>
<th>Conversational editors (for expert and nonexpert) Batch maintenance program</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Pre-editing</td>
<td>- Post-editing</td>
<td>Conversation editor development</td>
</tr>
<tr>
<td>- Dictionary development</td>
<td></td>
<td>Batch maintenance program</td>
</tr>
</tbody>
</table>

--- 149 ---
Name of project
PAROLE

Name of organization and contact address
Wireless Research Laboratory
Matsushita Electric Industrial Co., Ltd.
1006, Kadoma, Kadoma-shi, Osaka
571 Japan
Phone (06) 908-1291

Current status of the system
Has been conducted as a research project

Feature of the system
Use of semantic transfer method
System expandability (Grammar Rules, Dictionaries, Facilities, etc.)

Translated language
Japanese to English

Strategies on translation
1) Type of grammar for analysis and generation
 Case Grammar and Tree Transducer for analysis
 Phrase Structure Grammar and Tree Transducer for generation
2) Translation processes
 Japanese analysis using Case Frame
 Japanese to English transfer using Dependency Structure
 English generation using Phrase Structure
3) Rule size for analysis, transfer and generation (Aug. 1987)
 Analysis 200 rules (approx.)
 Transfer 100 rules (approx.)
 Generation 200 rules (approx.)

Dictaonaries
1) Structure
 Represented by Lisp S-expression
 Semantically classified
 Including morphological, syntactic and semantic information
2) Size
 Basic 5000 words (Aug. 1987)

Equipment
1) Implementation language
 Prolog and Lisp
2) Operating system
 Genera
3) Type of CPU
 Symbolics

Performance
Not measured

Facilities
Grammar development environment
Language for describing tree-to-tree-transducing rules
Debugging utilities for rule developments
1. Name of system or project: Mu Project.

2. Name of organisation and contact address:
 Nagao Laboratory, Dept. of Electrical Eng., Kyoto Univ.
 Address: Dept. of Electrical Eng., Kyoto Univ., Kyoto, Japan

3. Current status of the system:
 The Mu project started at April, 1982 and completed at March, 1986. Two systems, Japanese to English MT system and English to Japanese MT system were developed. 10,000 Japanese sentences and 3,000 English sentences were translated and the results were evaluated by professional translators.

 A new project was started at April, 1986, which follows the basic principles of the Mu systems. The project aims to develop a system which will be used at JICST (Japan Information Center for Science and Technology) for actual translation services from April, 1990.

4. Features of the system:
 The Mu systems were developed to show the technical feasibilities of practical MT systems which translate texts of certain restricted document types and subject fields (abstracts of scientific and technological papers, especially electrical engineering fields). The systems do not expect any pre- and post-editions.

 The basic approach is the transfer approach. The systems are characterized by Lexicon Driven Processing, Neutral Dictionaries and Heuristically Guided Processing.

5. Translated language: English to Japanese, Japanese to English.

6. Strategies in translation:
 A special software called GRADE is developed for the project. GRADE provides flexible pattern matching facilities to treat complicated linguistic phenomena. Rules can also be defined in the lexicon to treat word specific linguistic phenomena. Special cares are taken to treat large gaps of the two languages, English and Japanese. Analysis grammar produces deep case interpretations of input sentences, which are annotated by various levels of information, such as typo-graphical, morphological, syntactic information, semantic marker, etc. The transfer grammar is divided into three sub-grammars, Pre-Transfer-Loop, Main Transfer, and Post-Transfer-Loop. The Pre-Transfer-Loop transforms source language oriented representations into more neutral ones, and the Post-Transfer-Loop transforms neutral representations into more target oriented ones. Because of these two loops, the main transfer can work on deep semantic representations.

7. Dictionaries:
 (a) Structure: Japanese and English dictionaries are developed as neutral dictionaries which are independent of processing modes. Dictionaries for a translation system are created from the neutral dictionaries.
 (b) Size: About 80,000 items. The dictionaries for the new project will be extended to cover 300,000 items.

8. Equipment:
 - Uri-LISP on FACOM M332, M780 (FACOM OS/IV P4 ESP)
 - Zeta-LISP on Symbolics LISP Machines

9. Performance: Translation speed is about 4,000 words/hour (CPU: M780).

10. Facilities:
 An integrated translation environment was developed, which includes editors for texts, grammars and dictionaries. The new project will develop a new environment appropriate for translation services at JICST.
1. Name of system or project.
 HELTRAN-J/E(Welcom TRANslatin system-Japanese/English)

2. Name of organization and contact address.
 T: DASAI, Information Systems & Electronics Development Lab., Mitsubishi Electric
 Corp., 5-1-1 Ofuna, Kanagawa 247, Japan.

 Under commercial development.

4. Feature of the system.
 Transfer system based on logic programming.

5. Translated languages.
 Japanese to English.

 1) Type of grammar for analysis and generation --- Phrase structure grammar.
 2) Translation processes --- Tree transducer.
 3) Rule size for analysis, transfer and generation --- about 1000.

7. Dictionaries
 1) Structure --- Basic lexicon / Technical terminology / User dictionary.
 2) Size --- Basic-50,000 / Technical-30,000 for information processing.

8. Equipment
 1) Implementation language --- ESP(Extended Self-Contained Prolog)
 2) Operating system --- SIMPOS
 3) Type of CPU --- WELCOM PSI

9. Performance
 1) Translation speed --- 5000 words/hour(CPU:)
 2) Translation cost --- (evaluating)

10. Facilities
 Pre, Post-editing, interactive/batch translation, and grammar and dictionary
 development environment.
1. PIVOT
2. NEC Corp., Minato-ku Mita, Tokyo TEL. (03) 454-1111
3. Released for closed users
4. Interlingual Approach
5. English-to-Japanese, Japanese-to-English
6. 1) dependency grammar, augmented shift-reduced parser
tree to tree transducer
2) ai:Morphological Analysis
 a2:Gramatical and Semantic Analysis
 a3:Semantic Extraction
 g1:Conceptual Wording
 g2:Grammatical Generation
 g3:Morphological Generation
3) analysis more than 3000
generation about 2500
7. System Core Dictionary
 Japanese 40000 entries
 English 53000 entries
Term Dictionary
 covers more than 20 domain
 each of which includes less than 20000 entries
8. 1) C-language
 2) Acos-4
 3) Acos Main-Frame
9. 1) 60000
 2) 1500yen/A4 (double space) (tentative)
10. Bach and Interactive operation Modes
 Bach Tools: Text Processing and Management
 Dictionary updation and management
 Text transfer between terminal and host machine
 Interactive: Bi-lingual and mono-lingual text processing and management
 Functions Unknown word detection
 Dictionary updation
 etc.
Machine Translation System
at NIPPON • DATA GENERAL CORPORATION

1) Address

1st R&D Group NIPPON • DATA GENERAL CORPORATION
2165, Nochida, Gyoda-shi, Saitama, 361 Japan

2) Current state

Prototype system has been implemented.
And we are upgrading it for our own company's use.

3) Goals

Component of totally comprehensive electric office system.
Easy knowledge acquisition capability.

4) Languages

English ---) Japanese

5) Approaches

Phrase structure and deep case analysis using tree-transducer

Transfer approach
Morphological analysis
↓
Syntactic & Semantic analysis (about 1000 rules)
↓
Transfer (600 rules)
↓
Synthesis (400 rules)
↓
Morphological synthesis

Basic softwares are written by C.
Main computer is ECLIPSE MV series.

6) Dictionary

English-Japanese and Japanese dictionaries are on computer.
1. Name of system or project.
 PENSEE.

2. Name of organization and contact address.
 OKI Industry Co., Ltd.

 Released in Autumn 1986.

4. Feature of the system.
 1) High-quality translation on a small-size UNIX-based super personal computer.
 2) Simultaneous semantic processing and analysis of sentence structure.

5. Translated language.
 Translation of Japanese into English.
 Developing Translation of English into Japanese.

 1) Type of grammar for analysis and generation.
 Case grammar with deep structure.
 2) Translation processes.
 The translation system is made up of Japanese morphological analysis, interactive translation with syntactic and semantic analysis, and English morphological generation.

7. Dictionaries.
 1) Structure 2) Size
 System dictionary 60,000 words
 User's dictionary 40,000 word-capacity

8. Equipment.
 1) Implementation language.
 C language.
 2) Operating system
 UNIPLUS+ (UNIX System V base).
 3) Type of CPU
 MC68010, MC68020.

 1) Translation speed
 4,000 words / CPU-hour (MC68010 10MHz)

10. Facilities.
 1) A bilingual editing system for Japanese and English.
 2) A dictionary editing system which allows the registration of words into the user's dictionary.
 3) A preprocessing system which shows the result of Japanese morphological analysis.
1. System name
 Ricoh English-Japanese Machine Translation System (RMT)

2. Address
 Ricoh Company Limited
 Research and Development Center
 4686 Nippa-cho
 Kouhoku-ku, Yokohama
 223 Japan
 Phone:045-593-3411

3. Current status
 Now, under development. (Will be brought to market in 1988)

4. Features
 Structure Transfer referring to semantic features of words
 RMT offers one or more possible solutions to a source sentence.
 You choose your most favorite one.

5. Language Pair
 English to Japanese

6. Strategies
 Morphological Analyses
 Use some features of sentences. (200 rules)
 Syntactic Analyses
 Augmented context free grammar. (2,200 rules)
 Plausibility Evaluation
 Makes dependency tree using semantic features.
 (60 features)
 Transfer
 Makes Japanese tree with extended cases.
 (300 rules)

7. Dictionaries
 Main Dictionary (30,000 words)
 User Dictionary (30,000 words at most)
 Industry- or company-specific dictionaries (50,000 words)

8. Equipment
 1) Implementation language : C
 2) Operating system : UNIX System V
 3) Type of CPU : 3B2(AT&T)

9. Performance
 Translation speed : 4,500 words/h

10. Facilities
 Editing Software
 *Split-screen displays source and target text simultaneously
 *Misspelled or unknown words are checked.
 *Editing tasks such as word swap can be performed easily

 Entering Source Text
 *Source text may also be entered through OCR.

 Dictionary development utilities
 *You can enter new terms in User Dictionary by a menu provided.
1. Name of the system
 Translation Word Processor SWP-7800

2. Contact address
 Sanyo Electric Co., Ltd.
 Dept. of Information Systems
 2-7-25 Edobori
 Nishi-ku, Osaka 550
 (06) 443-5144

3. Current status of the system
 SWP-7800 has been on the market since April, 1987.

4. Characteristics
 The system uses the Transfer method of translation.
 By placing a translation system in a word processor, the efficiency
 of the translation work is improved.

5. Languages subject to translation
 Japanese to English translation only

6. Translation
 1) Augmented CFG, in conjunction with case grammar, is used to
 analyze the Japanese text and also to determine the dependency
 structure.
 2) Translation processes are, in order, Japanese morphological
 analysis, Japanese syntactic analysis, Japanese to English
 transfer, and English generation.

7. Dictionary
 The basic dictionary consists of four specific purpose dictionary
 files. They are 1) Japanese morphological dictionary, 2) Japanese analysis
 dictionary (syntactic and semantic), 3) Transfer dictionary, and 4) English
 generation dictionary (syntactic and morphological). In addition to the
 basic dictionary consisting of 55,000 words, memory area for another
 55,000 words has been allocated for a user-oriented dictionary.

8. Equipment
 The translation system is written in C programming language, and
 it runs on iRMX operating system. Type of CPU used is 80186.

9. Performance
 The speed of translation is 3500 words/hour.

10. Facilities
 All the editing functions of our top class word processor are
 available for pre- and post-editing of the text, and a dictionary editor
 assists the editing of the user dictionary.
1. Name of System:
 Sharp English-Japanese Machine Translation System

2. Name of organization and contact address:
 Sharp Corp., Information Systems Group,
 Information Systems Laboratories
 Address: 492, Minosho-cho, Yamatokoriyama-shi,
 Nara, 639-11, JAPAN
 Phone: 07435-3-5521
 Facsimile: 07435-3-0792

3. Current status: Commercial base

4. Feature of the system: High speed translation on desktop computer

5. Translated language: English to Japanese

6. Strategies of translation:
 1) Type of grammar for analysis and generation:
 Augmented Context-Free Grammar (for syntactic analysis).
 Case Grammar (for semantic analysis).
 Generation process is built by the combination of rules
 and procedures.
 2) Translation processes:
 Employs advanced natural language processing by means of
 semantic analysis.
 3) Rule size for analysis, transfer and generation:
 Around 1,000 rules (for syntactic analysis).
 Transfer and generation processes are built by the
 combination of rules and procedures.

7. Dictionaries:
 Structure and size:
 - Basic dictionary (around 60,000 words).
 - Technical term dictionary - up to 40,000 words/field -
 covering 4 fields such as Economics, Information Processing,
 Electronics, and Mechanical Engineering.
 - User dictionary (up to 40,000 words per dictionary).

8. 1) Implementation language: Language C
 2) Operating system: UNIX System V
 3) Type of CPU: MC68010, 68020
 4) Hardware: OA-110WS, OA-210, OA-310, IX-7

9. Translation speed: 5,000 words/hour (MC68010)

10. Facilities:
 1) Pre-editing:
 Users can specify (a) the correct part-of-speech of
 syntactically ambiguous words; and (b) the phrase boundaries.
 2) Post-editing:
 Interactive Syntactic and Lexical Disambiguation, and Learning.
1. Name of system or project

TAURAS (for a research model only)

2. Name of organization and contact address

Information Systems Lab., Toshiba R&D Center
1, Komukai Toshiba-Cho, Saiwai-Ro, Kawasaki 210, Japan

3. Current status of the system

Commercial

4. Features of the system

Implemented on Engineering Workstation
Transfer approach

5. Languages translated

English-Japanese

< TRANSLATION PROCESS >

6. Strategies of translation

1) Type of grammar for analysis and generation
 ATN + Lexical Grammars

2) Translation Process (figure)

7. Dictionaries

1) Structure
 for each entry: syntactic category; syntactic properties;
 semantic properties; lexical rules;

2) Size
 Max 130,000 words (general 50,000; technical 50,000;
 user-defined up to 30,000)

8. Equipment

1) Implementation language : C
2) Operating system : UNIX
3) Type of CPU : MC68020

9. Performance

Translation speed : 7,000 words/hour

10. Facilities

Pre- and Post-editor, Bi-lingual editor, Dictionary
 maintenance system, Word processors