The NiCT/ATR Speech Translation System for IWSLT 2007

Andrew Finch, Etienne Denoual, Hideo Okuma, Michael Paul, Hirofumi Yamamoto, Keiji Yasuda, Ruiqiang Zhang, Eiichiro Sumita
Overview

- Phrase-based SMT approach
 - In-house CleopATRA multi-stack decoder
- Participated in tracks CE, JE, IE
- Decoded from n-best lists
 - Tried decoding directly from confusion networks
- Focus was on the utilization of external resources
Translation System models

- Inverse phrase translation probability
- Lexical weighting probability from source to target
- Inverse lexical weighting probability
- Phrase penalty
- Language model probability
- Simple distance-based distortion model
- Word penalty
Translation System (decoding)

Correct Transcription
ASR 1-best
ASR n-best

Pre-Process
- tokenize

Translate
- MT n-best
- 1st best
- 2nd best
- ...
- n-th best

Rescore
- Google n-gram hits

Post-process
- restore punctuation
- restore case
- detokenize

Final 1-best output
Division of the Tasks

- Post-processing (punctuation and case restoration) and rescoring handled in the same way for all language pairs
- Pre-processing to decoder output handled by independent teams, one team for each language pair
- Therefore differing approaches are sometimes taken to solve the same tasks (e.g. sentence selection from the external corpora)
Punctuation and Case

- Large differences in BLEU can arise from different schemes of punctuation and casing.
- Pilot experiments were conducted on Italian-English.
 - Better to lowercase and remove punctuation.
 - Recover case and punctuation in post-processing.
 - The optimal scheme may depend on the language pair.
Punctuation restoration

- Two approaches evaluated
 - ME model
 - SRI LM Toolkit’s *hidden-ngram* tool
- *hidden-ngram* tool more effective
- Models built on supplied and external corpora were combined by linear interpolation
Case Restoration

- Hidden-ngram mode
- CRF tagging model
 - 3 tags (all upper, all lower, initial capital)
 - Mixed case words handled using a dictionary
 - Only lexical features
- CRF model superior
- Used for all experiments
Hit-rate-based Skip n-gram Rescoring

- Huge set of 5-grams from Google Inc.
 - Hard to deal with the size
 - Use a technique based on n-gram hit counting
 - Use only 4-gram and 5-gram counts
 - Allow holes in the n-grams
 - Rescore using a weighted function of the count
Results

<table>
<thead>
<tr>
<th>Data</th>
<th>Rescoring</th>
<th>BLEU</th>
<th>NIST</th>
<th>METEOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>dev5a</td>
<td>no</td>
<td>0.4288</td>
<td>9.1800</td>
<td>0.6944</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>0.4434</td>
<td>9.3165</td>
<td>0.7110</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>0.2056</td>
<td>5.4001</td>
<td>0.5265</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>0.2089</td>
<td>5.4023</td>
<td>0.5351</td>
</tr>
</tbody>
</table>

* In the real evaluation this technique degraded performance
Chinese⇒English

<table>
<thead>
<tr>
<th>source</th>
<th># sentences</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWSLT07 supplied corpus</td>
<td>40K</td>
<td>provided by IWSLT 2007</td>
</tr>
<tr>
<td>Chinese Olympic corpus</td>
<td>50K</td>
<td>part of the CLDC 2004-863-009</td>
</tr>
</tbody>
</table>
| LDC | 2.5M | LDC corpus
LDC2002T01
LDC2004T07
LDC2004T08
LDC2003T17
Chinese⇒English

- Lemmatization
 - The English words ‘do’ ‘doing’ ‘did’ and ‘done’ should all map to the same word
 - Only used to improve word alignment (not used in the phrase table)
- External resources included by linearly interpolating their models (weights selected by hand by tuning on development data)
Results

<table>
<thead>
<tr>
<th></th>
<th>TM</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWSLT07 provided corpus</td>
<td></td>
<td>46.65</td>
</tr>
<tr>
<td>Provided+LDC</td>
<td></td>
<td>49.70</td>
</tr>
<tr>
<td>Provided+LDC (lemmatizing for alignment)</td>
<td></td>
<td>50.48</td>
</tr>
<tr>
<td>Provided+Olympic+LDC (lemmatizing)</td>
<td></td>
<td>51.78</td>
</tr>
<tr>
<td>Provided+Olympic+LDC+MERT (lemmatizing)</td>
<td></td>
<td>57.32</td>
</tr>
</tbody>
</table>
Italian⇒English

- 20K Supplied corpus
- 940K selected from EUROPARL data
 - Filtered: length ratio > 0.85 (based on pilot expts)
Italian⇒English

- Linearly interpolated translation models
 - Gains on dev5a, BUT no gain on dev5b
 - Therefore not used for primary system
- EUROPARL was helpful for language modeling
 - EUROPARL LM was interpolated with LM from supplied data
Japanese⇒English

- In addition to the supplied corpus we used:
 - The Tanaka corpus (203K sentence pairs)
 - The Yomiuri News corpus (202K sentence pairs)
 - The SLDB corpus (72K sentence pairs)
 - The Chinese Olympic corpus included in the Chinese-LDC (104K sentence pairs)
Japanese⇒English

- Tokenization - CHASEN (publicly available)
- Training sentences were selected from external corpora
 - Build tri-gram LM from supplied corpus
 - Select sentences based on LM perplexity W.R.T. the LM (perplexity < 100)
- After selection 40K supplied and 117K external sentence pairs available for training
Japanese \rightarrow English

- n-best decoding
- 20-best ASR hypotheses decoded
- Decoding directly from Confusion Network gave similar performance (within 0.002 BLEU)
 - n-best decoding simpler and more flexible
 - No tokenization issues (must accept ASR tokenization if using CN)
- ASR scores added as a log-linear feature
 - Weight learned independently (maximize BLEU)
Additional Experiments

- Use longer phrases
 - Maximum phrase length 12 instead of 7
- Use lexical re-ordering model
 - The same model used in MOSES
- We do not use cluster-based models
- We decode from 1-best rather than n-best

Responsible for about 2 BLEU points
<table>
<thead>
<tr>
<th></th>
<th>3-gram</th>
<th>4-gram</th>
<th>5-gram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>39.51</td>
<td>41.20</td>
<td>41.43</td>
</tr>
<tr>
<td>Long phrases</td>
<td>40.22</td>
<td>41.79</td>
<td>41.82</td>
</tr>
<tr>
<td>Long phrases +</td>
<td>40.68</td>
<td>42.04</td>
<td>42.24</td>
</tr>
<tr>
<td>lexical reordering</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- Case, punctuation and tokenization choices have a large impact on overall system performance.
- Additional out-of-domain data can help, but can harm if not used carefully.
 - Select sentences based on similarity to the in-domain corpus.
 - Verify effectiveness on development data.
- Longer phrases can be effective.
The End

Thank you!