Multi-lingual Translation of Spontaneously Spoken Language in a Limited Domain

Alon Lavie, Donna Gates, Marsal Gavaldà, Laura Mayfield, Alex Waibel and Lori Levin
Center for Machine Translation
Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15213
e-mail: lavie@cs.cmu.edu

Abstract

JANUS is a multi-lingual speech-to-speech translation system designed to facilitate communication between two parties engaged in a spontaneous conversation in a limited domain. In an attempt to achieve both robustness and translation accuracy we use two different translation components: the GLR module, designed to be more accurate, and the Phoenix module, designed to be more robust. We analyze the strengths and weaknesses of each of the approaches and describe our work on combining them. Another recent focus has been on developing a detailed end-to-end evaluation procedure to measure the performance and effectiveness of the system. We present this procedure in the latter part of the paper, and present our most recent Spanish-to-English performance evaluation results.

1 Introduction

JANUS is a multi-lingual speech-to-speech translation system designed to facilitate communication between two parties engaged in a spontaneous conversation in a limited domain. A diagram of the architecture of the system is shown in Figure 1. The system is composed of three main components: a speech recognizer, a machine translation (MT) module and a speech synthesis module. The speech recognition component of the system is described elsewhere (Woszczyna et al. 1994). For speech synthesis, we use a commercially available speech synthesizer.

The MT module is composed of two separate translation sub-modules which operate independently. The first is the GLR module, designed to be more accurate. The second is the Phoenix module, designed to be more robust. Both modules follow an interlingua-based approach. The source language input string is first analyzed by a parser, which produces a language-independent interlingua content representation. The interlingua is then passed to a generation component, which produces an output string in the target language.

The discourse processor is a component of the GLR translation module. It disambiguates the speech act of each sentence, normalizes temporal
expressions, and incorporates the sentence into a discourse plan tree. The discourse processor also updates a calendar which keeps track of what the speakers have said about their schedules. The discourse processor is described in greater detail elsewhere (Rosé et al. 1995).

3 The GLR Translation Module

The GLR* parser (Lavie and Tomita 1993; Lavie 1994) is a parsing system based on Tomita’s Generalized LR parsing algorithm (Tomita 1987). The parser skips parts of the utterance that it cannot incorporate into a well-formed sentence structure. Thus it is well-suited to domains in which non-grammaticality is common. The parser conducts a search for the maximal subset of the original input that is covered by the grammar. This is done using a beam search heuristic that limits the combinations of skipped words considered by the parser, and ensures that it operates within feasible time and space bounds.

The GLR* parser was implemented as an extension to the GLR parsing system, a unification-based practical natural language system (Tomita 1990). The grammars we develop for the JANUS system are designed to produce feature structures that correspond to a frame-based language-independent representation of the meaning of the input utterance. For a given input utterance, the parser produces a set of interlingua texts, or ILTs. The main components of an ILT are the speech act (e.g., suggest, accept, reject), the sentence type (e.g., state, query-if, fragment), and the main semantic frame (e.g., free, busy). An example of an ILT is shown in Figure 2. A detailed ILT Specification was designed as a formal description of the allowable ILTs. All parser output must conform to this ILT Specification. The GLR unification based formalism allows the grammars to construct precise and very detailed ILTs. This in turn allows the GLR translation module to produce highly accurate translations for well-formed input.

The GLR* parser also includes several tools designed to address the difficulties of parsing spontaneous speech. To cope with high levels of ambiguity, the parser includes a statistical disambiguation module, in which probabilities are attached directly to the actions in the LR parsing table. The parser can identify sentence boundaries within each hypothesis with the help of a statistical method that determines the probability of a boundary at each point in the utterance. The parser must also determine the “best” parse from among the different parsable subsets of an input. This is done using a collection of parse evaluation measures which are combined into an integrated heuristic for evaluating and ranking the parses produced by the parser. Additionally, a parse quality heuristic allows the parser to self-

Figure 1: The JANUS System
judge the quality of the parse chosen as best, and
to detect cases in which important information is
likely to have been skipped.

Target language generation in the GLR module
is done using GenKit (Tomita and Nyberg 1988),
a unification-based generation system. With well-
developed generation grammars, GenKit results in
very accurate translation for well-specified ILTs.

4 The Phoenix Translation Module

The JANUS Phoenix translation module (May-
field et al. 1995) is an extension of the Phoenix
Spoken Language System (Ward 1991; Ward
1994). The translation component consists of a
parsing module and a generation module. Trans-
lation between any of the four source languages
(English, German, Spanish, Korean) and five tar-
get languages (English, German, Spanish, Korean,
Japanese) is possible, although we currently focus
only on a few of these language pairs.

Unlike the GLR method which attempts to con-
struct a detailed ILT for a given input utterance,
the Phoenix approach attempts to only identify
the key semantic concepts represented in the ut-
terance and their underlying structure. Whereas
GLR* is general enough to support both seman-
tic and syntactic grammars (or some combination
of both types), the Phoenix approach was specifi-
cally designed for semantic grammars. Grammat-
ical constraints are introduced at the phrase level
(as opposed to the sentence level) and regulate
semantic categories. This allows the ungrammatic-
alisations that often occur between phrases to be
ignored and reflects the fact that syntactically in-
correct spontaneous speech is often semantically
well-formed.

The parsing grammar specifies patterns which
represent concepts in the domain. The patterns
are composed of words of the input string as well
as other tokens for constituent concepts. Elements
(words or tokens) in a pattern may be specified as
optional or repeating (as in a Kleene star mecha-
nism). Each concept, irrespective of its level in the
hierarchy, is represented by a separate grammar
file. These grammars are coupled into Recursive
Transition Networks (RTNs).

The interlingua meaning representation of an
input utterance is derived directly from the parse
tree constructed by the parser, by extracting the
represented structure of concepts. This representa-
tion is usually less detailed than the corresponding
GLR ILT representation, and thus often re-
sults in a somewhat less accurate translation. The
set of semantic concept tokens for the Scheduling
domain was initially developed from a set of 45
example English dialogues. Top-level concepts, also
called slots, represent speech acts, such as sugges-
tion or agreement. Intermediate-level tokens dis-
tinguish between points and intervals in time, for
example; lower-level tokens capture the specifics
of the utterance, such as days of the week, and
represent the only words that are translated di-
rectly via lookup tables.

The parser matches as much of the input ut-
terance as it can to the patterns specified by the
RTNs. Out-of-lexicon words are ignored, unless
they occur in specific locations where open con-
cepts are permitted. A word that is already known
to the system, however, can cause a concept pat-
tern not to match if it occurs in a position un-
specified in the grammar. A failed concept does
not cause the entire parse to fail. The parser can
ignore any number of words in between top-level
concepts, handling out-of-domain or otherwise un-
expected input. The parser has no restrictions
on the order in which slots can occur. This can
cause added ambiguity in the segmentation of the
utterance into concepts. The parser uses a dis-
ambiguation algorithm that attempts to cover the
largest number of words using the smallest num-
ber of concepts.

Figure 3 shows an example of a speaker ut-
terance and the parse that was produced using
the Phoenix parser. The parsed speech recog-
nizer output is shown with unknown (-) and un-
expected (*) words marked. These segments of
the input were ignored by the parser. The rele-
vant concepts, however, are extracted, and string
together they provide a general meaning represent-
tation of what the speaker actually said.

Generation in the Phoenix module is accom-
plished using a simple strategy that sequentially
generates target language text for each of the top
level concepts in the parse analysis. Each con-
cept has one or more fixed phrasings in the target
language. Variables such as times and dates are
extracted from the parse analysis and translated
directly. The result is a meaningful translation,
but can have a telegraphic feel.

5 Combining the GLR and
Phoenix Translation Modules

5.1 Strengths and Weaknesses of the
Approaches

As already described, both the GLR* parser and
the Phoenix parser were specifically designed to
handle the problems associated with analyzing
spontaneous speech. However, each of the ap-
Original utterance: SI QUE TE PARECE TENGAS EL MARTES DIECIOCHO Y EL MIERCOLES DIECINUEVE LIBRES TODO EL DIA PODRIAMOS IR DE MATINEE O SEA EN LA TARDE VER EL LA PELICULA.

(Roughly "Yes what do you think I have Tuesday the eighteenth and Wednesday the nineteenth I could meet the whole day do you want to get together in the afternoon see the the movie?")

As decoded by the recognizer: SI QUE TE PARECE TENGAS EL MARTES DIECIOCHO Y EL MIERCOLES DIECINUEVE LIBRES TODO EL DIA PODRIAMOS IR DE MATINEE O SEA LA TARDE A VER LA PELICULA

Parsed:

[<S> si que te parece tengo el martes diecienocho y el miercoles diecinueve libres todo el dia podríamos ir de matineí o sea la tarde a ver la p<$/S>]

Parse Tree (= Semantic Representation):

[respond] ([yes] (SI))

[your turn] (QUE TE PARECE)

[give info] ([my availability] (TENGAS [temp/loc] ([temporal] ([point] ([date] (EL [d<ow] (MARTES)) [date] ([day ord] (DIECIOCHO) [end] (Y) EL [d<ow] (MIERCOLES)) ([date] ([day ord] (DIECINUEVE)))])))))

LIBRES)

[suggest] ([suggest meeting] ([temp loc] (temporal) ([point] ([temporal] ([range] ([entire] (TODO) [d<ow] [unit] [d<ow] ([unit] ([DEIA]))))))))))

PODRIAMOS)

[send] ([send] ([point] ([temporal] ([range] ([entire] (TODO))))))

O SEA LA TARDE A VER LA

Figure 3: A Phoenix Spanish to English Translation Example

approaches has some clear strengths and weaknesses.

Although designed to cope with speech disfluencies, GLR* can gracefully tolerate only moderate levels of deviation from the grammar. When the input is only slightly ungrammatical, and contains relatively minor disfluencies, GLR* produces precise and detailed HLTs that result in high quality translations. The GLR* parser has difficulties in parsing long utterances that are highly disfluent, or that significantly deviate from the grammar. In many such cases, GLR* succeeds to parse only a small fragment of the entire utterance, and important input segments end up being skipped. 1 Phoenix is significantly better suited to analyzing such utterances. Because Phoenix is capable of skipping over input segments that do not correspond to any top level semantic concept, it can far better recover from out-of-domain segments in the input, and "restart" itself on an in-domain segment that follows. However, this sometimes results in the parser picking up and mis-translating a small parsable phrase within an out-of-domain segment. To handle this problem, we are attempting to develop methods for automatically detecting out-of-domain segments in an utterance (see section 7).

Because the Phoenix approach ignores small function words in the input, its translation results are by design bound to be less accurate. However, the ability to ignore function words is of great benefit when working with speech recognition output, in which such words are often mistaken. By keying on high-confidence words Phoenix takes advantage of the strengths of the speech decoder. At the current time, Phoenix uses only very simple disambiguation heuristics, does not employ any discourse knowledge, and does not have a mechanism similar to the parse quality heuristic of GLR*, which allows the parser to self-assess the quality of the produced result.

5.2 Combining the Two Approaches

Because each of the two translation methods appears to perform better on different types of utterances, they may hopefully be combined in a way that takes advantage of the strengths of each of them. One strategy that we have investigated is to use the Phoenix module as a back-up to the GLR* module. The parse result of GLR* is translated whenever it is judged by the parse quality heuristic to be "Good". Whenever the parse result from GLR* is judged as "Bad", the translation is generated from the corresponding output of the Phoenix parser. Results of using this combination scheme are presented in the next section. We are in the process of investigating some more sophisticated methods for combining the two translation approaches.

6 Evaluation

6.1 The Evaluation Procedure

In order to assess the overall effectiveness of the two translation components, we developed a detailed end-to-end evaluation procedure (Gates et al. 1996). We evaluate the translation modules on both transcribed and speech recognized input. The evaluation of transcribed input allows us to assess how well our translation modules would function with "perfect" speech recognition. Testing is performed on a set of "unseen" dialogues, that were not used for developing the translation modules or training the speech recognizer.

The translation of an utterance is manually evaluated by assigning it a grade or a set of grades based on the number of sentences in the utterance. The utterances are broken down into sentences for evaluation in order to give more weight to longer utterances, and so that utterances containing both in and out-of-domain sentences can be judged more accurately.

Each sentence is classified first as either relevant to the scheduling domain (in-domain) or not rel-
evant to the scheduling domain (out-of-domain). Each sentence is then assigned one of four grades for translation quality: (1) Perfect - a fluent translation with all information conveyed; (2) OK - all important information translated correctly but some unimportant details missing, or the translation is awkward; (3) Bad - unacceptable translation; (4) Recognition Error - unacceptable translation due to a speech recognition error. These grades are used for both in-domain and out-of-domain sentences. However, if an out-of-domain sentence is automatically detected as such by the parser and is not translated at all, it is given an "OK" grade. The evaluations are performed by one or more independent graders. When more than one grader is used, the results are averaged together.

6.2 Results

Figure 4 shows the evaluation results for 16 unseen Spanish dialogues containing 349 utterances translated into English. Acceptable is the sum of "Perfect" and "OK" sentences. For speech recognized input, we used the first-best hypotheses of the speech recognizer.

Two trends have been observed from this evaluation as well as other evaluations that we have conducted. First, The GLR translation module performs better than the Phoenix module on transcribed input and produces a higher percentage of "Perfect" translations, thus confirming the GLR approach is more accurate. This also indicates that GLR performance should improve with better speech recognition and improved pre-parsing utterance segmentation. Second, the Phoenix module performs better than GLR on the first-best hypotheses from the speech recognizer, a result of the Phoenix approach being more robust.

These results indicate that combining the two approaches has the potential to improve the translation performance. Figure 5 shows the results of combining the two translation methods using the simple method described in the previous section. The GLR* parse quality judgement is used to determine whether to output the GLR translation or the Phoenix translation. The results were evaluated only for in-domain sentences, since out-of-domain sentences are unlikely to benefit from this strategy. The combination of the two translation approaches resulted in a slight increase in the percentage of acceptable translations on transcribed input (compared to both approaches separately). On speech recognized input, although the overall percentage of acceptable translations does not improve, the percentage of "Perfect" translations was higher.

7 Conclusions and Future Work

In this paper we described the design of the two translation modules used in the JANUS system, outlined their strengths and weaknesses and described our efforts to combine the two approaches. A newly developed end-to-end evaluation procedure allows us to assess the overall performance of the system using each of the translations methods separately or both combined.

Our evaluations have confirmed that the GLR approach provides more accurate translations, while the Phoenix approach is more robust. Combining the two approaches using the parse quality judgement of the GLR* parser results in improved performance. We are currently investigating other methods for combining the two translation approaches. Since GLR* performs much better when long utterances are broken into sentences or sub-utterances which are parsed separately, we are looking into the possibility of using Phoenix to detect such boundaries. We are also developing a parse quality heuristic for the Phoenix parser using statistical and other methods.

Another active research topic is the automatic detection of out-of-domain segments and utterances. Our experience has indicated that a large proportion of bad translations arise from the translation of small parsable fragments within out-of-domain phrases. Several approaches are under consideration. For the Phoenix parser, we have implemented a simple method that looks for small islands of parsed words among non-parsed words and rejects them. On a recent test set, we achieved a 33% detection rate of out-of-domain parses with no false alarms. Another approach we are pursuing is to use word salience measures to identify and reject out-of-domain segments.

We are also working on tightening the coupling of the speech recognition and translation modules of our system. We are developing lattice parsing versions of both the GLR* and Phoenix parsers, so that multiple speech hypotheses can be efficiently analyzed in parallel, in search of an interpretation that is most likely to be correct.

Acknowledgements

The work reported in this paper was funded in part by grants from ATR - Interpreting Telecommunications Research Laboratories of Japan, the US Department of Defense, and the Verbmobil Project of the Federal Republic of Germany.

We would like to thank all members of the JANUS teams at the University of Karlsruhe and Carnegie Mellon University for their dedicated work on our many evaluations.

2In a more recent evaluation, this combination method resulted in a 9.5% improvement in acceptable translations of speech recognized in-domain sentences. Although some variation between test sets is to be expected, this result strengthens our belief in the potential of this approach.
In Domain (605 sentences)

<table>
<thead>
<tr>
<th></th>
<th>GLR*</th>
<th>Phoenix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>transcribed speech</td>
<td>lst-best</td>
</tr>
<tr>
<td>Perfect</td>
<td>65.2</td>
<td>34.7</td>
</tr>
<tr>
<td>OK</td>
<td>18.8</td>
<td>12.2</td>
</tr>
<tr>
<td>Bad</td>
<td>16.0</td>
<td>29.2</td>
</tr>
<tr>
<td>Recog Err</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

Out of Domain (485 sentences)

<table>
<thead>
<tr>
<th></th>
<th>GLR*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>transcribed speech</td>
</tr>
<tr>
<td>Perfect</td>
<td>55.5</td>
</tr>
<tr>
<td>OK</td>
<td>26.7</td>
</tr>
<tr>
<td>Bad</td>
<td>14.8</td>
</tr>
<tr>
<td>Recog Err</td>
<td>**</td>
</tr>
</tbody>
</table>

Acceptable (Perfect + OK)

In Dom	84.0	46.9	78.6	61.8
Out of Dom	85.2	72.1	88.8	70.4
All Dom	84.5	58.2	82.9	65.5

Figure 4: September 1995 evaluation of GLR* and Phoenix. Cross-grading of 16 dialogues.

In Domain (605 sentences)

<table>
<thead>
<tr>
<th></th>
<th>GLR*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>transcribed speech</td>
</tr>
<tr>
<td>Perfect</td>
<td>65.4</td>
</tr>
<tr>
<td>OK</td>
<td>20.8</td>
</tr>
<tr>
<td>Bad</td>
<td>13.8</td>
</tr>
<tr>
<td>Recog Err</td>
<td>**</td>
</tr>
</tbody>
</table>

Acceptable (Perfect + OK)

| In Dom | 86.2 | 60.9 |

Figure 5: September 1995 evaluation of GLR* combined with Phoenix. Cross-grading of 16 dialogues.

References

