Learning Mechanism in Machine Translation System "PIVOT"

Mitsugu Miura Mikito Hirata Nami Hoshino
C&C Systems Engineering Division
NEC Corporation
4-12-35, Shibaura, Minato-ku,
Tokyo, JAPAN

Abstract
NEC's machine translation system "PIVOT" provides analysis editing functions. The user can interactively correct errors in analysis results, such as dependency and case. However, without a learning mechanism, the user must correct similar dependency errors several times. We discuss the learning mechanism to utilize dependency and case information specified by the user. We compared four types of matching methods by simulation and show non-restricted best matching is the most effective.

1. Introduction
In the current machine translation system, users cannot always get correct translated sentences at the first translation. This is due to the low ability of the grammar rules and low quality of the dictionary. Moreover, the grammar rules and the dictionary need customization for each document of varying fields and contents. It is very difficult to prepare beforehand the information corresponding to various fields.

NEC has developed a machine translation system "PIVOT"(Japanese to English/English to Japanese) as the translation support system for business use. The translation part of PIVOT is the rule-based system and adopts the interlingue method. PIVOT provides a special editor so that the user can correct the analysis results. The user can interactively select suitable translation equivalents, can correct dependency, case (semantic relation), and so on. In technical manual documents which are the main objects of machine translation, there are many expressions that appear more than once. The analysis results of such expressions are often the same. At present, PIVOT has learning function for selection of translation equivalents, but it does not have such mechanism for dependency and case. The user has to correct many similar errors in dependency and case, so a heavy burden is laid on the user. Information given by the user can be regarded as customizing information for the document to be translated. Therefore, for a practical use system, it is an important issue to provide a framework to improve translation by using correction information from the user.

There are various approaches for analyzing sentences by using accumulated dependencies. One system automatically extracts all dependencies which have no ambiguity[6]. Another system accumulates only the dependencies which are directly corrected by the user [2]. In Miura et al.[4], the system accumulates all dependencies in the sentence that are corrected or confirmed by the user.

There are two ways for remembering the keys in the dependency structures to be accumulated: one by the spelling and the other by the semantic code. However, the rough semantic code used in the current system does not have high distinguishing ability, and often causes bad influence. For example, consider the following sentences.

a. 彼はオペラグラスで歌っている男を見た。
He looked at the singing man with opera glasses.
b. 彼はマイクで歌っている男を見た。
He looked at the man who is singing with the microphone.

The semantic code "Instrument" is usually assigned to "オペラグラス(opera glasses)" and "マイク(microphone)". Therefore, it is not possible to fix dependency relation such as "歌う(singing)" with "マイク(microphone)", and "見る(look)" with "オペラグラス(opera glasses)".

In the process of using learning results there is an approach that adopts best matching by computing similarity with accumulated information[4]. The example-based approach that translates by retrieving examples and calculating similarity has been investigated. These systems also adopt best matching[1][6][7].

This paper proposes an approach that can improve the translation quality by interactively accumulating dependency and case structures corrected by the user. In the learning process, the syntactic head, the syntactic dependent, and the case between them are stored in the association database. To avoid side effects, head and dependent words are stored in the form of spellings. This makes it easier for the user to understand the behavior of the system. Four types of matching methods are examined that are used in matching between the possible analysis structures and the association database.

Section 2 describes analysis editing function in PIVOT/JE(Japanese to English). Section 3 explains the learning mechanism, and the results of simulation on actual manuals are presented in Section 4.

2. Analysis Editing Function
The user can interactively specify the following information related to dependency relation by using analysis editing function of PIVOT/JE.

(1) Dependency (syntactic dependent and syntactic head)
(2) Case
(3) Parallel
(4) Scope
The dependency relation which the system analyzes is displayed on the screen as shown in Figure 1. An underline is drawn under each Japanese phrase (a word with a particle). The dependency is shown by the line which connects two phrases. The thick line indicates the dependency corrected by the user. Case is displayed on the line of the dependency in the form of the particles which have one-to-one correspondence with one of the cases. The box indicates the correct case specified by the user. The user directly corrects above-mentioned information by using a mouse and carries out translation operation once again. The translation rule controls the analysis to reflect the correction by the user.

Figure 1: Display of Analysis Result

2.1 Dependency
The user can correct dependency. In Figure 2, syntactic head of "ユーザ(user)" is changed from "解析する(analyze)" to "指定する(specify)".

Figure 2: Example of Dependency Correction

2.2 Case
Case shows the semantic relation between two phrases which are in dependency relation. PIVOT has more than forty kinds of cases such as Agent and Reason. On the screen, particles are used to express cases.

In Figure 3, the case between "EWS4800" and "動作する(run)" is changed from "Contents" to "Place".

Figure 3: Example of Case Correction

2.3 Parallel
The user can specify the information that two phrases are in parallel relation. Because parallel relation is one of the PIVOT cases, this function enables the user to correct dependency and case at the same time.

2.4 Scope
The user can specify scope. Scope means the phrase sequence in which only the syntactic head has dependency relation with other phrases outside of it.

2.5 Sharing
In Figure 1, "ユーザ(user)" is the subject of "指定(specify)" and at the same time it is the subject of "翻訳する(translate)". In such a case, we say "user" is shared by "指定(specify)" and "翻訳する(translate)". Specification of sharing is done by specifying more than one syntactic heads for the dependent. So the sharing is decomposed into dependency relations.

Useful information on dependency relation is gotten from the user’s specification of scope and so on, but this paper discusses learning from correction operation for dependency and case only.

3. Learning Mechanism
Proposed learning mechanism is as follows.

3.1 Learning Process
(1) PIVOT analyzes a source sentence.
(2) PIVOT displays the analysis result.
(3) A user corrects mistakes in the analysis result.
(4) After the user finishes making corrections, PIVOT translates the sentence again.
(5) PIVOT asks the user whether translation has been a success or not.
(6) If the translation is a success, PIVOT stores the analysis result together with the instruction item into an association database. If the translation is a failure, PIVOT does nothing further.

3.2 Applying Process
(1) PIVOT analyzes a source sentence.
(2) If there is ambiguity at a certain stage of analysis, PIVOT retrieves data in the association database.
(3) PIVOT compares the possible analysis structures of the given sentence with the analysis results accumulated in the association database.
(4) PIVOT selects the analysis structure that matches with the analysis results accumulated in the association database. If no matching occurs, PIVOT selects one structure by further application of the analysis rules.

PIVOT learns correct analysis structures related to user’s instruction. The smallest unit of PIVOT’s analysis structure, that is, the triplet of syntactic dependent (with particles and voice information), syntactic head (with voice information), and the case
between them, combined with the instruction item forms the learning unit. The instruction item shows what the correction has been made on, namely, case or dependency correction. Each learning unit is accumulated in the association database. The database can be retrieved with the spelling of the syntactic dependent or head as the key. The learning unit corresponds to the following structure.

\[
\text{word2} \text{ (Syntactic head)} \quad \text{CASE1} \text{ (Case)} \quad \text{word1} \text{ (Syntactic dependent)}
\]

Example of the learning process and the applying process is shown below. This is the example of correcting dependency.

[Translation process at the first stage]

Source sentence:

彼はオペラグラスで歌っている男を見た。

(Translation)

Possible analysis structures:

(Analysis structure 1) (Analysis structure 2)

\[
\begin{array}{ccc}
\text{AGT} & \text{OBJ} & \text{INS} \\
\text{彼} & \text{男} & \text{歌っている}\text{ INS}\text{agna} \\
\end{array}
\]

Translated sentence:

He looked at the man who is singing with opera glasses.

[Instruction by User and the Learning Process]

The user corrects the analysis results.

Correction of dependency:

The user changes the syntactic head of "オペラグラスで歌っている" from "歌っている" to "見た" (look)."

Translated sentence:

He looked at a singing man with opera glasses.

Learning:

PIVOT stores the correct analysis structure with dependency as the instruction item in the association database.

\[
\begin{array}{ccc}
\text{CASE1} & \text{CASE2} & \text{word1} \\
\text{歌っている} & \text{歌っている} & \text{歌っている}\text{ INS}\text{agna} \\
\end{array}
\]

[Applying process]

PIVOT translates another similar sentence.

Source sentence:

私はオペラグラスで笑っている女を見た。

(Translation)

Possible analysis structures:

(Analysis structure 1) (Analysis structure 2)

\[
\begin{array}{ccc}
\text{AGT} & \text{OBJ} & \text{INS} \text{ OBJ} \\
\text{笑っている} & \text{INS}\text{agna} & \text{女} \\
\end{array}
\]

Translated sentence:

I looked at a laughing woman with opera glasses.

Watching:

PIVOT succeeds in matching, and selects analysis structure 2.

Translated sentence:

I looked at a laughing woman with opera glasses.

3.3 Watching Methods

The learning mechanism decreases the number of user's instructions. The problem is to find the effective matching method in the learning mechanism.

We made experiments on four types of matching methods and compared the efficiency of each method.

The matching methods are:

(1) Restricted exact matching
(2) Non-restricted exact matching
(3) Restricted best matching
Non-restricted best matching

Restricted exact matching is a well-known method. This method is used in many fields now. There is no study about non-restricted exact matching. Restricted best matching is a comparatively new method. Experiment by Miura[4] is the first. There is no study about non-restricted best matching.

3.3.1 Restricted Matching and Non-restricted Matching

In restricted matching, the item in applying process has to be the same with the instruction item in learning. When the items are different, PIVOT will not use learned data. For example, if the instruction item in learning is case, PIVOT will use the learned correct analysis structure only for case selection. It will not use the data for selection of dependency or translation equivalent of each word.

In non-restricted matching, the item in applying process need not be the same with the instruction item in learning. For example, if the instruction item in learning is case, PIVOT will use this learned data for selection of dependency and translation equivalent of each word as well.

The difference between the actions of restricted matching and non-restricted matching is described below. Consider a sentence with two possible analysis structures.

(Analysis structure 1) (Analysis structure 2)
word5 word5
CASE1 CASE3 CASE4 CASEE CASE4
word1 word3 word4 word1 word4
CASE2 CASE5 CASE6
word2 word2 word3

Assume the following analysis structure is already learned by correcting case.

word4
CASE5
word2

Using restricted matching, the system selects structure 1 with its usual analysis procedure. In this case, data learned by case correction cannot be used in selection of dependency. Using non-restricted matching, the system selects structure 2, because the learned pattern matches with the part of structure 2.

3.3.2 Exact Matching and Best Matching

Exact matching makes matching only once, while best matching makes matching several times. Best matching is also called associative reasoning.

The difference of actions between the two methods is illustrated below.

![Database Search Pattern Matching](image)

Suppose that the following data is accumulated in the association database through dependency instructions.

(C4,W3,W7)
(C3,W3,W2)
(C3,W5,W7)
(C1,W2,W6)
(C1,W3,W1)
(C1,W5,W1)
(C2,W3,W6)

Exact matching:
[Assumption]
There are two possible syntactic heads, W7 and W3, for W2.
[Action]
The association database is searched for patterns (*, W7, W2) and (*, W3, W2). (*:don't care)

Database Search Pattern Matching
(C4,W3,W7) (x,W7,W2) (C4=x,W3=W3,W2=W2) Success
(C3,W3,W2) (x,W3,W2) (C3=x,W3=W3,W2=W2) Fail
(C3,W5,W7) (C1,W2,W6) (C3,W5,W1) (C1,W5,W1) (C2,W3,W6)

(C3,W3,W2) is selected as the correct answer.

Best matching:
[Assumption]
There are two possible syntactic heads, W7 and W5, for W2.
[Action]
First, the association database is searched for patterns (*, W7, W2) and (*, W5, W2). (*:don't care)

Database Search Pattern Matching
(C4,W3,W7) (x,W7,W2) (C4=x,W3=W3,W2=W2) Fail
(C3,W5,W7) (x,W5,W2) (C3=x,W3=W5,W2=W2) Fail
(C3,W3,W2) (C1,W2,W6) (C1,W3,W1) (C1,W5,W1) (C2,W3,W6)

In this case, there is no data that exactly matches...
with search patterns. However, there is data \((C3,W3,W2)\) that matches with syntactic dependent. The system retrieves more information in the database so as to decide which of \(W5\) and \(W7\) is more similar to \(W3\).

Searching database for patterns \((*,*,W3)\) and \((*,W3,*)\), the following data is obtained.

\[
(C4,W3,W7)\quad (C3,W3,W2)\quad (C1,W3,W1)\quad "\text{database(W3)}"\quad (C2,W3,W6)
\]

Searching database for patterns \((*,*,W7)\) and \((*,W7,*)\), the following data is obtained.

\[
(C4,W3,W7)\quad (C3,W5,W7)\quad (C1,W5,W1)\quad "\text{database(W7)}"\quad (C2,W3,W6)
\]

On the assumption that \(W3\) is the same as \(W7\), the system performs exact matching between database(W3) and database(W7). In the following, \([W3]\) is regarded as \(W7\).

\[
\begin{align*}
\text{Database(W3)} & \quad \text{Database(W7)} \\
(C4,W3,W7) & \quad (C4,W3,W7) \quad \text{Match} \\
(C3,W3,W2) & \quad (C3,W5,W7) \quad \text{Match} \\
(C1,W3,W1) & \quad (C1,W5,W1) \quad \text{Match} \\
(C2,W3,W6) & \quad (C1,W5,W1) \quad \text{Match}
\end{align*}
\]

Because the number of matches between database(W3) and database(W5) is larger than that between database(W3) and database(W7), \(W5\) is considered to be more similar to \(W3\) than \(W7\). \(W5\) is selected as the head.

3.3.3 Matching Algorithm

Let PDBi \((PCi,PHi,PDi,PTi)\) \((1\leq i \leq n)\) be a possible analysis structure, where

- \(PCi\): Case, \(PHi\): Head, \(PDi\): Dependent, \(PTi\): Item.
- PDB is called "possible analysis structures database".

Let ADDk \((ACK,AKh,ADk,ATk)\) \((1\leq k \leq m)\) be an association database entry, where

- \(ACK\): Case, \(AKh\): Head, \(ADk\): Dependent, \(ATk\): Item.
- ADD is called "association database".

Matching algorithm for dependency selection is shown below. All PDi's in PDB are supposed to be the same and most of PGI's in PDB are supposed to be "don't care" for ease of understanding.

First Step:

Extract all ADDk's such that PDi==ADk \((1\leq i \leq n, 1\leq k \leq m)\) from AD and create \(SADDB\) \((SCi,SHi,SDi,STi)\) \((1\leq j \leq p)\), where

- \(SCi\): Case, \(SHi\): Head, \(SDi\): Dependent, \(STi\): Item.
- SADDB is a subset of AD.

If nothing is in SADDB, stop search and return fail.

Second Step:

1) Restricted exact matching

Let WORK be an empty database.

for i=1 to n

for j=1 to p

if (SCi==PCi & SHi==PHi & STi==PTi)

then add PDBi to WORK;

endif

end

end

return WORK;

2) Non-restricted exact matching

Let WORK be an empty database.

for i=1 to n

for j=1 to p

if (SCi==PCi & SHi==PHi)

then add PDBi to WORK;

endif

end

end

return WORK;

3) Restricted best matching

Let \(WKB1, WKB2\) be empty databases.

\(cnt=0;\)

for i=1 to n

for j=1 to p

if (SCj==PCi & SHj==PHi & STj==PTi)

then add PDBi to WKB1;

endif

else if (SCj==PCi & SDj==PHj & STj==PTj & WKB1==NULL)

/\ Calculate the similarity between
\(SHj\) and \(PHi\), /

extract all ADDK's such that

\(AKh==SHj\) or \(AKh==SHj\) \((1\leq k \leq m)\)

and create database \(X\);

extract all ADDK's such that

\(AHk==PHi\) or \(AKh==PHi\) \((1\leq k \leq m)\)

and create database \(Y\);

assume \(SHj==PHi\) and perform restricted exact matching between \(X\) and \(Y\);

Let \(cnt1\) be the number of matched entries between \(X\) and \(Y\);

if \((cnt1>0 \& cnt1==cnt)\)

then add PDBi to WKB2;

endif

\(/\ x\ Cat\ is\ the\ largest\ number\ of\ matches\)
made between X and Y, showing the
degree of similarity between them. x/
else if (cnt>cnt)
then
cnt=cnt1;
clear WORK2;
add PDB1 to WORK2;
endif
endif
end

if (WORK1!= NULL)
then return WORK1;
endif
else return WORK2;

(4) Non-restricted best matching
The algorithm is the same as (3) except that non-
restricted exact matching is performed between X and Y
instead of restricted exact matching.

In the above, if more than one entries are in WORK
or WORK1, the system will select one that is most
recently stored by the user's instruction. If WORK2 has
more than one entries, one entry will be selected by
further application of the rules.

Matching algorithm for case selection is similar to
that for dependency selection.

4. Experiments
Experiments have been made to evaluate the effect
of learning mechanism described in Section 3 by simul-
ation. In the experiments, the instruction items were
limited to case and dependency.

A total of 1565 sentences were collected from six
kinds of technical manuals. These sentences were trans-
lated with PIVOT/JE. Using the analysis editing func-
tion stated previously, correction of mistakes in
dependencies and cases were made.

After all errors in the analysis results of the
whole text were corrected, correction information for
case and dependency was extracted and put into a file.
A tool which simulates learning mechanism was prepared.
After reading the file which stores the correction
information, it counts the number of corrections to be
made in each of the following cases: no application of
the learned data, application with restricted exact
matching, application with restricted best matching,
application with non-restricted exact matching and with
non-restricted best matching.

The results are shown in the table and the graph
below. The value is the sum of the estimated number of
the corrections and the estimated number of the recor-
drections needed to cancel the secondary effect.

<table>
<thead>
<tr>
<th>Text 1</th>
<th>Text 2</th>
<th>Text 3</th>
<th>Text 4</th>
<th>Text 5</th>
<th>Text 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>220</td>
<td>456</td>
<td>713</td>
<td>920</td>
<td>1138</td>
</tr>
<tr>
<td>X</td>
<td>112</td>
<td>220</td>
<td>346</td>
<td>372</td>
<td>447</td>
</tr>
<tr>
<td>O</td>
<td>81</td>
<td>137</td>
<td>250</td>
<td>262</td>
<td>301</td>
</tr>
<tr>
<td>△</td>
<td>76</td>
<td>127</td>
<td>217</td>
<td>243</td>
<td>271</td>
</tr>
<tr>
<td>●</td>
<td>79</td>
<td>131</td>
<td>232</td>
<td>261</td>
<td>289</td>
</tr>
<tr>
<td>▲</td>
<td>77</td>
<td>123</td>
<td>218</td>
<td>238</td>
<td>266</td>
</tr>
</tbody>
</table>

Graph 1

The results are shown in order of effectiveness.
1 non-restricted best matching
2 restricted best matching
3 non-restricted exact matching
4 restricted exact matching
5 without learning

Non-restricted best matching is the most effective
among the five methods.

5. Conclusion
This paper discussed the learning mechanism for
dependency and case corrected by the user. The learned
data is accumulated in the association database. Four
types of matching methods that are used in the applying
process were examined. The simulation shows that non-
restricted best matching is the most effective among
the four types.

The learning mechanism discussed above is also
effective for selection of a translation equivalent.
This mechanism will be incorporated in PIVOT, taking
over the current learning mechanism for selection of
translation equivalents.
References

