abstract

TEXAN is a system of transfer-oriented text analysis. Its linguistic concept is based on a communicative approach within the framework of speech act theory. In this view texts are considered to be the result of linguistic actions. It is assumed that they control the selection of translation equivalents. The transition of this concept of linguistic actions (text acts) to the model of computer analysis is performed by a context-free illocution grammar processing categories of actions and a propositional structure of states of affairs. The grammar which is related to a text lexicon provides the connection of those categories and the linguistic surface units of a single language.

1. The Problem

One of the main tasks of machine translation, besides the resolution of ambiguities and the generation of appropriate structural analyses, is the selection of adequate translation equivalents. It has been found that an analysis which even produces unequivocal results does not suffice for the production of pragmatically adequate texts in the target language.

There are problems with respect to the selection of appropriate lexemes, collocations, idiomatic expressions on the one hand. On the other hand we have to know what kind of syntactic patterns and anaphoric or elliptical constructions usually are applied with respect to the text type. What we need is information on communicative norms. In addition to a syntactic and/or semantic analysis we have to provide a pragmatic component especially in order to solve problems on the level of transfer.

The notion that linguistic usage and the selection of means of expression (lexis and syntax) is directed by - or at least influenced by - communicative intentions has received increasing attention with respect to problems of translation. Recent research in this area include communicative grammars for foreign-language learning (e.g. Leech/Svartvik 1975), but also more specific studies which explicitly take account of text function (Reis/Vermeer 1984, Thièl 1980) and aspects of action in texts (Hönig/Kuhrnaul 1982). These studies have influenced the theoretical foundations of TEXAN to the extent that we view communicative aspects as decisive for the solution of translation problems.

Some short examples of our texts (interacting-regulatory texts, especially international treaties) may illustrate this approach. We should know when a special pattern has to be applied in different languages and when it has to be changed. It has been found in these texts that there is a special type of definition (DEFINE) with lexical restrictions and which always is realized by participle constructions in English, German, French, Italian, etc. A translation by a relative clause, e.g. in German, would be wrong. In a different text type it may be right or even must have this form. On the other hand, regulations (REGULATE) differ in verb forms. Thus in German present tense is to be used, in English shall-forms, and in French present and future may be alternatives. A general principle is, that the participants never are pronounized.

The question now is what kind of linguistic model can help us to structure the relevant components of the analysis system?

2. Concept of Text Acts (TA)

Our system needs a linguistic model in which content, function and form of linguistic expressions in a text are connected. We think that a good concept for this purpose may be the concept of text acts (Rothkegel 1984). TA are speech acts in which texts are produced. When we translate, we are producing a new text.

We follow Searle's analysis of speech acts into illocutionary, propositional and locutionary parts and assume, with respect to texts, the existence of three parts of text acts (I: text illocution; T: thematic specification of the propositional part; R: repertoire of lexical and grammatical expressions which are typically used for a specific communicative task).

\[TA = (I, T, R) \]

Automatic procedures for the processing of speech act basically have to do with the selection and representation of contextual factors. They determine the assignment of illocutions to linguistic utterances (Gazdar 1981). What models developed for this purpose have in common is the use of overall schemas within which the respective speech acts can be interpreted. While Evans (1981) handles general definitions of situations, Allen/Perrault (1980), Cohen (1978) and Grosz (1982) use general action plans in which the speech acts of interest are embedded. This principle, which is applied to dialogues in the models mentioned, we have applied to written texts in TEXAN (example of an article in Fig.1).

3. Model of Analysis

The analysis of text acts is oriented conceptually in a top-down fashion. In the context of machine processing, however, we have to rely on the linguistic surface as input data. TEXAN is a system which builds on other programs already completed within our project. We use a syntax parser [SATAN, cf. SALEM 1980], for instance, which provides a description of constituent structure and valencies. Furthermore, we use a program for case-grammatical analysis (PROLIL, cf. Harbusch/Rothkegel 1984) which provides a role interpretation on the description of constituent structure. Input into TEXAN, then, is a complete structural and caserelational description of sentences. This determines
to a large extent the strategy of analysis within TEXAN. In principle, the task here is to bundle the available information on syntax, lexis and thematic roles in a form suitable to the determination of the underlying illocution. Nevertheless, the concept of text acts is the basis for the structure of data. We distinguish the following components (Fig. 2):

Fig. 2

The components of the automatic analysis are GRILL (grammar of illocutions), TEL (text lexicon) and TEF (sequence of propositions of the Text). INT (schema of interpretation for the structure of states of affairs and communicative tasks) and HAS (action structure of the text) are preconditions in order to formulate the rules of GRILL. 'text' represents the input structure. This means that the sentences are syntactically analyzed and ordered according to a propositional listing. 'text representation' is output in the form of Fig. 1.

In the following we will sketch the structure of the components.

INT represents the structure in which knowledge of states of affairs is embedded into knowledge of linguistic action. It consists of 4 parts which can be combined. States of affairs (see Fig. 3):

(a) actions (a (x, y, z))
(b) states of affairs occur as actions/interactions (a) of/between participants (x1, x2, ..) and related to an concrete object (y) or abstract object (z) or relate the two ones (y,z).
(c) situation (m,n,o,p,..) actions are embedded in a situation described by parameters of time, location, personal relationship, domain, procedures, etc.

Fig. 3
(d) the verbalization of an action can be seen in the
status of condition, norm, purpose, permission, etc.

Linguistic actions:
They are interpretations of states of affairs with re-
spect to communicative Basks and can be described as
predications on propositions. Thus we can add several
types of illocutions to (a)-(d). Examples are:

CONCRETIZE \(a \{ x, (y), (z) \} \)
FIX \(\{ b \{ z \} \} \)

HAS (Fig. 4) represents the action structure of 'trea-
ties of trade' in terms of text acts. Our example in
Fig.1 shows a segment of REGULATE (case).

DETERMINE ANTICIPATE DELEGATE
activities consequences tasks
APPLY means APPLY control
REGULATE (case) REGULATE (case)
GENERALIZE DIFFERENTIATE DIFFERENTIATE
general case special case spec.case1 spec.case2

Fig. 4

TEL represents the text lexicon. According to the two
tasks of TEXAN TEL includes two sections of information:
a declarative or rule representation (R) which is described by types of il-
locution and roles such as REGULATE (case), SPECIFY
(object), etc., and a selection section consisting of
lists of repertoires which belong to several single
languages (TAS:R(L1,...,Ln)). As a third part a key \(k \)
is established which provides the connection of input
data and the TA-information. On the level of simple
illocutions the key is represented by the lemma of the
head of the respective phrase; on the level of complex
illocutions the key is the illocution of a lower level.

An entry of TEL has the following design:

TEL : 1. key (lemma or illocution)
2. TAS (I/F)
3. TAE (R (L1: 1,g)
R (L2: 1,g)

It is possible that one key corresponds to several en-
tries of TEL. This is the case if there are different
TAS.

GRILL provides rules which represent the structure of
INT and HAS and which transform them into procedures.
GRILL (grammar of illocutions) has such a form that it
can be processed by a context-free grammar parser. A
parser has been developed according to the structure
of the programming language COMSKEE. Elements of the
TEF-component (listing of propositions of the text)
are integrated as parameter \(F \) into the rules.

a) rule for terminals \((R1-R9) \), general form:
\[
I_{c}(T_{j})/(F) := I_{g}(T_{j})/(F) \]
e.g. CONCRETIZE (contact)/(F1) := "inform" (cont)/(F1)

b) rule for non-terminals \((R1-R9) \), general form:
\[
I_{c}(T_{j})/(F_{1-n}) := I_{g}(T_{j})/(F_{1-n}) + < | I_{g}(T_{h})/ R^{n}/ (F_{0-p}) >
\]
\(n \) recursion
\(< \) optional
\(R \) surface conditions

4. Transfer

On the basis of identified illocutions with respect to
L1 we have access to the lexical and grammatical in-
formation of R with regard to L2, L3, etc. This infor-
mation is offered by TEL. We apply a further assign-
ment rule of the following type (e=english, d=german,
l=lexical info., g=syntactic info.):

for 'lemma'(Lx), \(I_{c}(T_{j}) := R(l_{g}, g_{k}) \) (Ly)
for \(I_{c}(T_{j})(Lx) \) := \(R(l_{g}, g_{k}) \) (Ly)

Examples:

for 'subject'(e), CONCRETIZE(commerce) :=
R(l: 'einführen', 'anwenden')
for GENERALIZE (case) (e):=
R(g: main clause, activ,
present tense)(d)

The transfer part is to be seen as a kind of "helper"
for translation purposes. It may be used by human
translators as well as by systems generating the com-
plete target text.

References

Cohen, P.R., 1978. On knowing what to say: Planning
speech acts. Ph.D.Thesis, Dep.of Computer Science,
Univ.of Toronto.
K./Webber, B.L./Sag, J.A., Elements of discourse
understanding, 64-83, Cambridge, Univ.Press.
Grosz, B.J., 1982. Discourse Analysis:In: Kittredge,
R./Lehrberger, J.(ed), Sublanguage, 139-194.
Berlin, de Gruyter.
Harbusch, K./Rothkegel, A., 1984. PROLID . Ein Pro-
gramm zur Rollenidentifikation. Ling. Arbeiten des
SFB 100,N.F.8, Univ. Saarbrücken.
Tübingen, Narr.
Leech, G./Svartvik, J., 1975. A communicative grammar
Reiß, K./Vermeer, H.J., 1984. Grundlegung einer all-
genossen Translationstheorie. Tübingen, Niemeyer.
Rothkegel, A., 1984. Sprachhandlungstypen in inter-
aktionsregelnden Texten. In: Rosengren, l.(Hg.),
Sprache und Pragmatik, Lunder Symposium 1984, 255-
278, Stockholm, Almqvist & Wiksell Int.
paper no. 133, Universität Trier.
SALEM. Sonderforschungsbereich 100 (Hg.), 1980. Ein
Verfahren zur automatischen Lemmatisierung deut-
scher Texte. Tübingen, Niemeyer.
Thiel, G., 1980. Vergleichende Textanalyse als Basis
für die Entwicklung einer Übersetzungsstruktur. In: Wiss.
W.(Hg.), Semiotik und Übersetzen, 87-98.
Tübingen, Narr.