AN ENGLISH JAPANESE MACHINE TRANSLATION SYSTEM OF
THE TITLES OF SCIENTIFIC AND ENGINEERING PAPERS

Makoto Nagao, Jun-ichi Tsujii (Kyoto University)
Koji Yada (Electrotechnical Lab.)
Toshihiro Kakimoto (Fujitsu Co.)

JAPAN

The title sentences of scientific and engineering papers are
analyzed by simple parsing strategies, and only eighteen
fundamental sentential structures are obtained from ten thou-
sand titles. Title sentences of physics and mathematics of
some databases in English are translated into Japanese with
their keywords, author names, journal names and so on by
using these fundamental structures. The translation accuracy
for the specific areas of physics and mathematics from INSPEC
database was about 93%.

1. INTRODUCTION

There have been many researches on syntactic analysis of natural language by comput-
er, but still no reliable grammatical rules are established yet which can be
applicable to any utterances of a language. Universal grammatical rules for a
language looks like almost hopeless. Grammatical rules to be prepared depend heavi-
ly on the text to be analyzed. Hence the concept of subgrammar is introduced. It
does not necessarily cover all the different kinds of sentential structures of a
language. A grammar which covers just the set of expressions to be treated is
sufficient from the engineering point of view.

We developed a machine translation system which translates the titles of scientific
and engineering papers from English into Japanese. More than 98% of the titles in
scientific and engineering papers are noun phrases, so that the system is designed
to translate only the noun phrases. The verbs can be used in the forms of to +
infinite, verb-ing, and verb-ed. The system can not treat the embedded sentences
which are introduced by relative pronouns.

Then the essential structures the system can treat are composed of simple noun
phrases, verbs of the forms of to-infinitive, verb-ing, and verb-ed, and preposi-
tions. Here a simple noun phrase means the juxtaposition (endocentric structure)
of adjectives, nouns, and some other elements. The word order of a simple noun
phrase can be the same in English and Japanese. The sentential structures obtained
after parsing each simple noun phrase into a noun is called a skeleton pattern. We
can expect that the variety of such skeleton patterns is very few for the restrict-
ed area of titles of scientific and engineering papers.

When the variety is very few, we do not need further syntactic analysis for these
skeleton patterns. For each skeleton pattern the corresponding Japanese skeleton
pattern (word order change) can be given. Thus the subgrammar in this system is a
very peculiar one which is an accumulation of heuristics of the title structures.
We utilized this specific nature of the titles in our machine translation system.

The correct translation rate for the wide variety of scientific and engineering
papers is about 80%, but for the specific areas of physics and mathematics from
INSPEC database the score was about 93%. The system is now used for the conversion
246 M. NAGAO et al.

of English databases into Japanese databases. This system thus opened a way for
the Japanese people to make access to English databases in their own language.

2. SPECIAL CHARACTERISTICS OF TITLE SENTENCES

Title sentences of scientific and engineering papers in English have the following
properties from the point of view of translation.

(1) Nouns in the titles are usually specific terminological words in a particular
field. The translation of these words into Japanese is almost unique. This makes
avoid a difficult problem of the selection of proper translation words from several
candidates, which we encounter in ordinary words.

(2) Many colloquial expressions exist in the titles. These are regarded as idioms,
and their internal structures are not analyzed. The whole expressions are stored
in a dictionary with their Japanese translations.

(3) A simple noun phrase in English can be translated into Japanese by replacing
each word into Japanese without any word order change.

(4) Many of the special terminological words in science and engineering are com-
pound words. They are treated as such in a dictionary. When the translation of a
simple noun phrase according to (3) is not acceptable, the phrase is stored in a
dictionary as a compound word with its translation. Therefore the dictionary look-
up is done by the longest match principle.

(5) The word order change in the translation is only possible in the cases where
verbs and prepositions are used. This word order change can be done at the level
of skeleton patterns.

3. DICTIONARY LOOK-UP

The block diagram of our title translation system is shown in Fig. 1. The first
step is the dictionary look-up of words and idioms. We gathered a lot of specific
expressions as idioms, such as "time varying (mechanism)", "based on ...", and so
on. "verb-ing" can be a noun, adjective, and present participle, but there are
many verb-ing's whose grammatical function is almost unique: accounting, bonding,
engineering and no on as nouns, superconducting as adjective, and using, determin-
ing as verbs which demand objects or complements. The dictionary has this informa-
tion.

4. CONJUNCTIVE PHRASE

The second step is the parsing of conjunctive phrases by "and" and "or". As is
well known there is an ambiguity for the conjunctive phrases of the forms:
\[A \text{ and } B \text{ of } C, \]

Adjective + noun + and + noun,

and so on. It is very difficult to determine the scope of conjunctive phrases,
and to get the correct parsing without the detailed semantic analysis. The present
program parses simply the nearest two terms which have the same parts of speech, such as:

\[\text{adj. + and + adj. } \rightarrow \text{adj.} \]
\[\text{verb + and + verb } \rightarrow \text{verb} \]
\[\text{verb-ing(-ed) + and + verb-ing(-ed) } \rightarrow \text{verb-ing(-ed)} \]
\[\text{noun + and + noun } \rightarrow \text{noun} \]

Special consideration is given to the following specific conjunctive phrase:
Fig. 1. Flow of Title Translation.

prep. + noun + and + prep. + noun \rightarrow (prep. + noun) + and + (prep. + noun)
\rightarrow prep. + noun

Conjunctive structures such as,

(adj. + noun) + and + noun

can not be analyzed correctly.

5. SIMPLE NOUN PHRASE

Next step is the parsing of a simple noun phrase, which may include some other parts of speeches. The recognition of a simple noun phrase is done by the finite automaton model shown in Fig. 2. The recognition starts from the initial state, and the proper transfer of the state is done for the sequential input of words. When the automaton reaches to the final state the recognition of the end of a simple noun phrase is ended. The word order of the corresponding Japanese is the same as English within the scope of a simple noun phrase.
6. SPECIAL WORD SEQUENCE

There are some particular word sequences which must be treated separately. Typical ones are as follows.

(a) n₁ + of + n₂ : This word sequence is regarded as a noun after parsing. This is translated into the Japanese word order : n₂ + n₁ + of.

(b) prep. + n (at the beginning of the titles) : An example is "On pattern recognition". In this case, very tricky treatment is done as "prep. + n + of". This means that prep. is an accessory to the noun phrase (a) which follows it, and the structure of this noun phrase is the main part of the analysis. The translation is first done to the noun phrase, and at the final stage the translation of the preposition is attached to the end of the translated noun phrase.

(c) verb-ed + prep. : This structure is just parsed to prep. which has the modifying term of verb-ed. The Japanese translation is "prep. + verb-ed + of" (passive particle). An example is :
MACHINE TRANSLATION SYSTEM OF TITLES

a paper presented to a conference ➔ a paper to a conference

(d) verb-ing + prep. (at the beginning of the titles). An example is "concerning to ...". Syntactically "verb-ing" in this case plays the same role as a noun. So it is replaced by noun.

(e) noun + verb-ing + prep.: The determination of the grammatical role of verb-ing in this case is very difficult. By the title sentences it is frequent that verb-ing is used as a noun (gerund), and the interpretation of noun + verb-ing ➔ noun + noun ➔ noun is adopted.

7. SEMANTIC DISAMBIGUATION

After the parsing of the above particular structures there still remain some more difficult structures which require semantic treatment. "verb-ing + noun" is a typical such structure. Verb-ing can be either a modifying element to the noun, or a present participle which requires the noun as an object. An example is:

measuring temperature ➔ 温度計測
(measuring) (temperature) (measuring)

measuring device ➔ 測定器具
(measuring) (device)

Therefore the check must be done between the verb and the noun which follows as to whether the noun can be a subject or an object to the verb.

For this purpose five semantic elements are introduced. These are shown in Table 1 with some nouns classified by these elements. The same semantic information is used to denote what kind of nouns can be a subject or an object to a verb. For example the subject nouns to the verb "measure" have the semantic categories of tool and theory, and the object nouns for the verb have the semantic categories of physical object, and aspect. By checking these semantic relations the syntactic structure and the translation word order are determined.

verb-ing + noun ➔ verb による noun
(subject)

verb-ing + noun ➔ noun に verbする...
(object)

Table 1. Semantic elements

tool	instrument, machine, probe, etc.
aspect	velocity, temperature, resistance, etc.
physical object	metal, water, oil, waveguide, etc.
theory	principle, technique, approach, etc.
unit	cm, degree, etc.
Such semantic checking is performed in the following syntactic structures.

1. \(n + \text{verb-ing} \): if semantic check does not work, verb-ing is regarded as a gerund and is modified by the noun.

2. verb-ing + \(n \): if the noun phrase \((n) \) has an article, it is an object of the verb. If semantic check does not work, \(n \) is regarded as an object.

3. \(n_{1} + \text{verb-ing} + n_{2} \): Semantic check between the verb and \(n_{1} \), and the verb and \(n_{2} \) is done. If semantic check does not work, the interpretation is that \(n_{1} \) is an object of the verb, and verb-ing modifies \(n_{2} \).

4. prep. + verb-ing + prep.: verb-ing is understood as a gerund.

Table 2. Skeleton patterns and the frequency of their usage in INSPEC translation.

<table>
<thead>
<tr>
<th>English skeleton pattern</th>
<th>Japanese word order</th>
<th>Frequency for INSPEC titles</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) (-\text{ing} \cdot n)</td>
<td>(-\text{ing} \cdot n)</td>
<td>0</td>
</tr>
<tr>
<td>(2) (n)</td>
<td>(n)</td>
<td>466</td>
</tr>
<tr>
<td>(3) (n \cdot -\text{ing})</td>
<td>(n \cdot -\text{ing})</td>
<td>0</td>
</tr>
<tr>
<td>(4) (n_{1} \cdot \text{prep} \cdot n_{2})</td>
<td>(n_{2} \cdot \text{prep} \cdot n_{1})</td>
<td>536</td>
</tr>
<tr>
<td>(5) (n_{1} \cdot \text{prep} \cdot n_{2} \cdot -\text{ing})</td>
<td>(n_{2} \cdot \text{ing} \cdot \text{prep} \cdot n_{1})</td>
<td>0</td>
</tr>
<tr>
<td>(6) (n_{1} \cdot \text{prep} \cdot n_{2} \cdot -\text{ing} \cdot \text{prep} \cdot n_{3})</td>
<td>(n_{3} \cdot \text{prep} \cdot n_{2} \cdot -\text{ing} \cdot \text{prep} \cdot n_{1})</td>
<td>0</td>
</tr>
<tr>
<td>(7) (n_{1} \cdot \text{prep} \cdot n_{2} \cdot \text{prep} \cdot n_{3})</td>
<td>(n_{3} \cdot \text{prep} \cdot n_{2} \cdot \text{prep} \cdot n_{1})</td>
<td>147</td>
</tr>
<tr>
<td>(8) (n_{1} \cdot \text{prep} \cdot n_{2} \cdot \text{prep} \cdot n_{3} \cdot \text{prep} \cdot n_{4})</td>
<td>(n_{4} \cdot \text{prep} \cdot n_{3} \cdot \text{prep} \cdot n_{2} \cdot \text{prep} \cdot n_{1})</td>
<td>32</td>
</tr>
<tr>
<td>(9) (n_{1} \cdot \text{prep} \cdot n_{2} \cdot \text{prep} \cdot n_{3} \cdot \text{prep} \cdot n_{4} \cdot \text{prep} \cdot n_{5})</td>
<td>(n_{5} \cdot \text{prep} \cdot n_{4} \cdot \text{prep} \cdot n_{3} \cdot \text{prep} \cdot n_{2} \cdot \text{prep} \cdot n_{1})</td>
<td>2</td>
</tr>
<tr>
<td>(10) (n_{1} \cdot \text{prep} \cdot n_{2} \cdot \text{prep} \cdot n_{3} \cdot \text{prep} \cdot n_{4} \cdot \text{prep} \cdot n_{5} \cdot \text{prep} \cdot n_{6})</td>
<td>(n_{6} \cdot \text{prep} \cdot n_{5} \cdot \text{prep} \cdot n_{4} \cdot \text{prep} \cdot n_{3} \cdot \text{prep} \cdot n_{2} \cdot \text{prep} \cdot n_{1})</td>
<td>0</td>
</tr>
<tr>
<td>(11) (n_{1} \cdot \text{prep} \cdot n_{2} \cdot \text{v} \cdot n_{3})</td>
<td>(n_{2} \cdot \text{prep} \cdot n_{1} \cdot \text{adj} \cdot \text{v} \cdot n_{3})</td>
<td>1</td>
</tr>
<tr>
<td>(12) (n \cdot \text{v} \cdot \text{adj})</td>
<td>(n \cdot \text{adj} \cdot \text{v})</td>
<td>0</td>
</tr>
<tr>
<td>(13) (n_{1} \cdot \text{v} \cdot n_{2})</td>
<td>(n_{1} \cdot \text{v} \cdot n_{2} \cdot \text{adj} \cdot \text{v})</td>
<td>1</td>
</tr>
<tr>
<td>(14) (n_{1} \cdot \text{v} \cdot n_{2} \cdot \text{prep} \cdot n_{3})</td>
<td>(n_{1} \cdot \text{v} \cdot n_{2} \cdot \text{prep} \cdot n_{3})</td>
<td>1</td>
</tr>
<tr>
<td>(15) (n_{1} \cdot \text{v} \cdot \text{prep} \cdot n_{2})</td>
<td>(n_{1} \cdot \text{v} \cdot \text{prep} \cdot n_{2})</td>
<td>0</td>
</tr>
<tr>
<td>(16) (\text{v} \cdot n)</td>
<td>(\text{v} \cdot n)</td>
<td>2</td>
</tr>
<tr>
<td>(17) (\text{v} \cdot n_{1} \cdot n_{2})</td>
<td>(n_{1} \cdot \text{v} \cdot n_{2} \cdot \text{v})</td>
<td>1</td>
</tr>
<tr>
<td>(18) (\text{v} \cdot n_{1} \cdot \text{prep} \cdot n_{2})</td>
<td>(n_{2} \cdot \text{prep} \cdot n_{1} \cdot \text{v} \cdot \text{v})</td>
<td>1</td>
</tr>
</tbody>
</table>
8. SKELETON PATTERN

The parsing process thus far produces a skeleton pattern for each title sentence. For example:

An Automated General Purpose Test System for Solid State Oscillators.
(Skeleton) System for Oscillators (n + prep. + n)

A Laser Doppler Technique for Measuring Flow Velocities in High Current Arc Discharge.
(Skeleton) Technique for Measuring Velocities in Discharge. (n + prep. + ver-ing + n + prep. + n)

The skeleton patterns obtained from ten thousand title sentences are astonishingly few. These are shown in Table 2, with the frequency of occurrence of each pattern for about a thousand title sentences of physics and mathematics in INSPEC database. The Japanese word order is also given to each skeleton patterns.

The translation of prepositions is set unique by the present program as shown in Table 3. There are of course several cases where different Japanese expressions should be adopted for a preposition depending on the context. This is an important problem to be solved in the future.

<table>
<thead>
<tr>
<th>Table 3. Translation of preposition.</th>
</tr>
</thead>
<tbody>
<tr>
<td>of</td>
</tr>
<tr>
<td>by</td>
</tr>
<tr>
<td>with</td>
</tr>
<tr>
<td>at</td>
</tr>
<tr>
<td>for</td>
</tr>
</tbody>
</table>

9 TEST RESULT

A test result of the title translation from INSPEC database is shown in Table 4. Average time necessary for the translation of a title is 0.1 second. After the translation of 1000 titles, the dictionary was updated by the new words which appeared in the input data and which were absent in the dictionary. Then the same 1000 titles were again translated, and the rejection was checked. Then the next 1000 titles were handled in the same way, and so on.

<table>
<thead>
<tr>
<th>Table 4. Test result of title translation from INSPEC database.</th>
</tr>
</thead>
<tbody>
<tr>
<td>title number</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>1 ~ 1000</td>
</tr>
<tr>
<td>1001 ~ 2000</td>
</tr>
<tr>
<td>2001 ~ 3000</td>
</tr>
</tbody>
</table>

Computer used is M200 (one of the biggest computers in Japan).
With 3000 titles from INSPEC the rejected were only 42 titles (1.4%). Many of the rejected titles had the structures which the system can not accept, such as normal sentential structures, and question forms. The system can only accept the noun phrases without any embedded sentential structures by relative pronouns.

Among the translated titles, about 5% were wrong or ununderstandable. Many of these errors came from the wrong parsing of conjunctive phrases. Some examples of the translation are shown in Table 5. For some other databases in English the correct translation rate was about 80%. This rate depends heavily on the dictionary contents.

10. CONCLUSION

The translation system is now being used on trial basis at Tukuba Research Information Processing System (RIPS) of the Agency of Industrial Science and Technology. The titles, keywords, and some other journal information of INSPEC database are translated into Japanese, and a new database in Japanese language is created. Retrieval can be done by Japanese language by using Chinese characters and Kana letters to this database of INSPEC Japanese version.

The system seems to be practically usable, and the program is being transferred to a few other database centers for their use in the conversion of English database into Japanese database.

Table 5. Example of English Japanese translation.

<table>
<thead>
<tr>
<th>English Title</th>
<th>Japanese Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>THERMOHYDRAULIC ANALYSIS OF GAS-COOLED ROD ASSEMBLIES IN NUCLEAR REACTORS</td>
<td>気冷中核の軸と形態の水蒸気解析</td>
</tr>
<tr>
<td>BEHAVIOR OF DRAG DISC TURBINE TRANSDUCERS IN STEADY-STATE TWO-PHASE FLOW</td>
<td>定常状態二相流でのドラッグディスクタービン変換器の特性</td>
</tr>
<tr>
<td>VOID FRACTION CORRELATION OF TWO-PHASE FLOW OF LIQUID METALS IN TUBES</td>
<td>管内の液体金属の二相相フロウのポイド分率関係</td>
</tr>
<tr>
<td>COMPARISON OF THE ORDER OF APPROXIMATION IN SEVERAL SPATIAL DIFFERENCE SCHEMES FOR THE DISCRETE-ORDINATES TRANSPORT EQUATION IN ONE-DIMENSIONAL PLANE GEOMETRY</td>
<td>一次元平面幾何での離散性状方程式のための数値空間差分法の数値比較</td>
</tr>
<tr>
<td>GENERALIZED QUASI-STATIC METHOD FOR NUCLEAR REACTOR SPACE-TIME KINETICS</td>
<td>核反応所空間時間動力学のための一般化準静的手法</td>
</tr>
<tr>
<td>SEMICLASSICAL CONVERGENT CALCULATIONS FOR THE ELECTRON-IMPACT BROADENING AND SHIFT OF SOME LINES OF NEUTRAL HELIUM IN A HOT PLASMA</td>
<td>熱プラズマでの中性ヘルイオンのある線の電子衝突広がり及びシフトのための半古典的収束計算</td>
</tr>
<tr>
<td>TRANSITION PROBABILITIES AND THEIR ACCURACY</td>
<td>遷移確率及びそれらの正確さ</td>
</tr>
<tr>
<td>THEORY OF RESONANCE-RADIATION PRESSURE</td>
<td>戦勝放射圧力の理論</td>
</tr>
<tr>
<td>EXCHANGED MOMENTUM BETWEEN A SURFACE WAVE AND ATOMS</td>
<td>表面波及び原子のエネルギー交換した運動量</td>
</tr>
</tbody>
</table>