Phrase-Based Translation
Machine Translation

\[p(English|Chinese) \sim \]

\[p(English) \times p(Chinese|English) \]

language model

translation model
Machine Translation

\[p(English|Chinese) \sim p(English) \times p(Chinese|English) \]

language model

translation model
The IBM Models
The IBM Models

- Fertility probabilities.
The IBM Models

- Fertility probabilities.
- Word translation probabilities.
The IBM Models

- Fertility probabilities.
- Word translation probabilities.
- Distortion probabilities.
The IBM Models

- Fertility probabilities.
- Word translation probabilities.
- Distortion probabilities.
- Some problems:
 - Weak reordering model -- output is not fluent.
 - Many decisions -- many things can go wrong.
The IBM Models

- Fertility probabilities.
- Word translation probabilities.
- Distortion probabilities.

Some problems:
- Weak reordering model -- output is not fluent.
- Many decisions -- many things can go wrong.
The IBM Models

• Fertility probabilities.
• Word translation probabilities.
• Distortion probabilities.

Some problems:

• Weak reordering model -- output is not fluent.
• Many decisions -- many things can go wrong.
IBM Model 4

Although north wind howls, but sky still very clear.

虽然北风呼啸，但天空依然十分清澈。
Although north wind howls, but sky still very clear.

虽然北风呼啸，但天空依然十分清澈。
Although north wind howls, but sky still very clear.

Although north wind howls, but sky still very clear.

$p_f(1|\text{虽然})$
Although north wind howls, but sky still very clear.

IBM Model 4

Although north wind howls, but sky still very clear.
Although north wind howls, but sky still very clear.
Although north wind howls, but sky still very clear.

IBM Model 4
IBM Model 4

Although north wind howls, but sky still very clear.

Although north wind howls, but sky still very clear.

Although north wind howls, but sky still very clear.

Although north wind howls, but sky still very clear.
IBM Model 4

Although north wind howls, but sky still very clear.

虽然北风呼啸，但天空依然十分清澈。
Although north wind howls, but sky still very clear.

Although north wind howls, but sky still very clear.

IBM Model 4
IBM Model 4

Although north wind howls, but sky still very clear.

However
Although north wind howls, but sky still very clear.

IBM Model 4

$p_t(However|虽然)$
Although north wind howls, but sky still very clear.

Although north wind howls, but sky still very clear.

However north wind strong, the sky remained clear. under the
Although north wind howls, but sky still very clear.

虽然北风呼啸，但天空依然十分清澈。

However north wind strong, the sky remained clear. under the
Although north wind howls, the sky remained clear.

However, the north wind was strong, but the sky remained clear under the

IBM Model 4
Although north wind howls, but sky still very clear.

IBM Model 4

However north wind strong, the sky remained clear. under the

\[p_d(0|\text{However}) \]
Although north wind howls, but sky still very clear.

However north wind strong, the sky remained clear. under the
Although north wind howls, but sky still very clear.

Although north wind howls, but sky still very clear.

However north wind strong, the sky remained clear. under the

$\mathcal{P}(8|\text{north})$
Although north wind howls, but sky still very clear.

Although north wind strong, the sky remained clear. Under the
Although north wind howls, but sky still very clear.

However, the sky remained clear under the strong north wind.
Although north wind howls, but sky still very clear.

Although north wind howls, but sky still very clear.

However, the sky remained clear under the strong north wind.

$p(\text{English, alignment}|\text{Chinese}) = \prod_{p_f} \prod_{p_t} \prod_{p_d}$
IBM Model 4

虽然北风呼啸，但天空依然十分清澈。

However, the sky remained clear under the strong north wind.

\[p(English, \text{alignment}|Chinese) = \prod_{p_f} \prod_{p_t} \prod_{p_d} \]
However, the sky remained clear under the strong north wind.

\[p(\text{English}|\text{Chinese}) = \sum_{\text{alignments}} \prod_{p_f} \prod_{p_t} \prod_{p_d} \]
(from Minka ’98)
... and, likelihood is \textit{convex} for IBM Model 1:

But not IBM Models 3-5!
Tradeoffs: Modeling v. Learning

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Lexical Translation</th>
<th>Local ordering dependency</th>
<th>Fertility</th>
<th>Convex</th>
<th>Tractable Exact Algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM Model 1</td>
<td>✔</td>
<td>✘</td>
<td>✘</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>HMM</td>
<td>✔</td>
<td>✔</td>
<td>✘</td>
<td>✘</td>
<td>✔</td>
</tr>
<tr>
<td>IBM Model 4</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✘</td>
<td>✘</td>
</tr>
</tbody>
</table>
Tradeoffs: Modeling v. Learning

Lesson:
Trade exactness for expressivity

<table>
<thead>
<tr>
<th></th>
<th>Lexical Translation</th>
<th>Local ordering dependency</th>
<th>Fertility</th>
<th>Convex</th>
<th>Tractable Exact Algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM Model 1</td>
<td>✔️</td>
<td>✗</td>
<td>✗</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>HMM</td>
<td>✔️</td>
<td>✔️</td>
<td>✗</td>
<td>✗</td>
<td>✔️</td>
</tr>
<tr>
<td>IBM Model 4</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>
Although north wind howls, but sky still very clear.

However, the sky remained clear under the strong north wind.

What are some things this model doesn't account for?
Although north wind howls, but sky still very clear.

However, the sky remained clear under the strong north wind.

What are some things this model doesn’t account for?
Phrase-based Models

Although north wind howls, but sky still very clear.

虽然北风呼啸，但天空依然十分清澈。
Although north wind howls, but sky still very clear.
Although north wind howls, but sky still very clear.

However
Although north wind howls, but sky still very clear.

However the strong north wind, the sky remained clear under.
Although north wind howls, but sky still very clear.

Phrase-based Models

Although north wind howls, but sky still very clear.

Although north wind howls, but sky still very clear.

Phrase-based Models
Although north wind howls, but sky still very clear.

However, the strong north wind, the sky remained clear under.

Phrase-based Models
Although north wind howls, but sky still very clear.

However

the strong north wind

the sky remained clear under.

However

the sky remained clear under

the strong north wind.
Although north wind howls, but sky still very clear.

However, the strong north wind, the sky remained clear under.

\[p(\text{English, alignment}|\text{Chinese}) = p(\text{segmentation}) \cdot p(\text{translations}) \cdot p(\text{reorderings}) \]
Although north wind howls, but sky still very clear.

Although north wind howls, but sky still very clear.

However, the sky remained clear under the strong north wind.

However, the sky remained clear under the strong north wind.

$\scriptstyle p(English, \text{alignment}|\text{Chinese}) = p(\text{segmentation}) \cdot p(\text{translations}) \cdot p(\text{reorderings})$
Although north wind howls, but sky still very clear.

However, the strong north wind, the sky remained clear under.

\[p(\text{English}, \text{alignment}|\text{Chinese}) = p(\text{segmentation}) \cdot p(\text{translations}) \cdot p(\text{reorderings}) \]
Although north wind howls, but sky still very clear.

However, the strong north wind, the sky remained clear under.

\[p(\text{English, alignment}|\text{Chinese}) = p(\text{segmentation}) \cdot p(\text{translations}) \cdot p(\text{reorderings}) \]
Although north wind howls, but sky still very clear.

However, the strong north wind, the sky remained clear under the strong north wind.

\[p(\text{English, alignment}|\text{Chinese}) = p(\text{segmentation}) \cdot p(\text{translations}) \cdot p(\text{reorderings}) \]
Although north wind howls, but sky still very clear.

However, the strong north wind, the sky remained clear under the strong north wind.

$p(\text{English}, \text{alignment}|\text{Chinese}) = p(\text{segmentation}) \cdot p(\text{translations}) \cdot p(\text{reorderings})$

distortion = 6
Phrase-based Models
Phrase-based Models

• Segmentation probabilities.
Phrase-based Models

- Segmentation probabilities.
- Phrase translation probabilities.
Phrase-based Models

• Segmentation probabilities.
• Phrase translation probabilities.
• Distortion probabilities.
Phrase-based Models

- Segmentation probabilities.
- Phrase translation probabilities.
- Distortion probabilities.

Some problems:

- Weak reordering model -- output is not fluent.
- Many decisions -- many things can go wrong.
Phrase-based Models

- Segmentation probabilities.
- Phrase translation probabilities.
- Distortion probabilities.

Some problems:
- Weak reordering model -- output is not fluent.
- Many decisions -- many things can go wrong.
Phrase-based Models

- Segmentation probabilities.
- Phrase translation probabilities.
- Distortion probabilities.

Some problems:
- Weak reordering model -- output is not fluent.
- Many decisions -- many things can go wrong.
Phrase-based Models

- Segmentation probabilities: fixed (uniform)
- **Phrase translation probabilities.**
- Distortion probabilities: fixed (decaying)
Learning $p(\text{Chinese} \mid \text{English})$

• Reminder: (nearly) every problem comes down to computing either:
 • Sums: MLE or EM (learning)
 • Maximum: most probable (decoding)
Recap: Expectation Maximization

- Arbitrarily select a set of parameters (say, uniform).
- Calculate *expected counts* of the unseen events.
- Choose new parameters to maximize likelihood, using expected counts as proxy for observed counts.
- Iterate.
- Guaranteed that likelihood is monotonically nondecreasing.
Marginalize: sum all alignments containing the link

$p(\text{虽然 北 风 呼啸 , 但 天空 依然 十分 清澈。}) +$

However, the sky remained clear under the strong north wind.

$p(\text{虽然 北 风 呼啸 , 但 天空 依然 十分 清澈。}) +$

However, the sky remained clear under the strong north wind.

$p(\text{虽然 北 风 呼啸 , 但 天空 依然 十分 清澈。})$

However, the sky remained clear under the strong north wind.
Divide by sum of all possible alignments

However, the sky remained clear under the strong north wind.
Divide by sum of all possible alignments

We have to sum over exponentially many alignments!
EM for Model 1

probability of an alignment.

\[p(F, A|E) = p(I|J) \prod_{a_i} p(a_i = j)p(f_i|e_j) \]
EM for Model 1

probability of an alignment.

\[p(F, A \mid E) = p(I \mid J) \prod_{a_i} p(a_i = j)p(f_i \mid e_j) \]
EM for Model 1

probability of an alignment.

$$p(F, A | E) = p(I | J) \prod_{a_i} p(a_i = j) p(f_i | e_j)$$

factors across words.

observed uniform
EM for Model 1

\[p(a_i = j | F, E) = \frac{p(a_i = j, F|E)}{p(F, E)} = \]
EM for Model 1

\[p(a_i = j | F, E) = \frac{p(a_i = j, F | E)}{p(F, E)} = \]

\[\sum_{a \in A: \text{北} \leftrightarrow \text{north}} p(\text{north} | \text{北}) \cdot p(\text{rest of } a) \]
EM for Model 1

\[
p(a_i = j \mid F, E) = \frac{p(a_i = j, F \mid E)}{p(F, E)} = \sum_{a \in A: 北 \leftrightarrow \text{north}} p(\text{north} \mid 北) \cdot p(\text{rest of } a)
\]
EM for Model 1

marginal probability of alignments containing link

\[p(\text{north} | \text{北}) \sum_{a \in A : \text{北} \leftrightarrow \text{north}} p(\text{rest of } a) \]
EM for Model 1

marginal probability of alignments containing link

\[
p(north | \text{北}) \sum_{a \in A: \text{北} \leftrightarrow north} p(\text{rest of } a)
\]

\[
\sum_{c \in \text{Chinese words}} p(north | c) \sum_{a \in A: \leftrightarrow north} p(\text{rest of } a)
\]

marginal probability of all alignments
EM for Model 1

marginal probability of alignments containing link

\[
p(north|北) \sum_{a \in A: 北 \leftrightarrow north} p(\text{rest of } a)
\]

\[
\sum_{c \in \text{Chinese words}} p(north|c) \sum_{a \in A: c \leftrightarrow north} p(\text{rest of } a)
\]

marginal probability of all alignments
EM for Model 1

marginal probability of alignments containing link

\[p(\text{north}|\text{北}) \sum_{a \in A: \text{北} \leftrightarrow \text{north}} p(\text{rest of } a) \]

\[\sum_{c \in \text{Chinese words}} p(\text{north}|c) \sum_{a \in A: c \leftrightarrow \text{north}} p(\text{rest of } a) \]

identical!

marginal probability of all alignments
EM for Model 1

\[
p(north | 北) = \frac{\sum_{c \in \text{Chinese words}} p(north | c)}{}
\]
EM for Phrase-Based

- Model parameters: $p(E \text{ phrase} \mid F \text{ phrase})$
- All we need to do is compute expectations:

$$p(a_{i,i'} = \langle j, j' \rangle \mid F, E) = \frac{p(a_{i,i'} = \langle j, j' \rangle, F \mid E)}{p(F, E)}$$
EM for Phrase-Based

- Model parameters: $p(E\ phrase \mid F\ phrase)$
- All we need to do is compute expectations:

$$p(a_{i,i'} = \langle j, j' \rangle \mid F, E) = \frac{p(a_{i,i'} = \langle j, j' \rangle, F \mid E)}{p(F, E)}$$

$p(F,E)$ sums over all possible phrase alignments
EM for Phrase-Based

- Model parameters: $p(E \text{ phrase} \mid F \text{ phrase})$
- All we need to do is compute expectations:

\[
p(a_{i,i'} = \langle j, j' \rangle \mid F, E) = \frac{p(a_{i,i'} = \langle j, j' \rangle, F \mid E)}{p(F, E)}
\]

$p(F,E)$ sums over all possible phrase alignments

...which are one-to-one by definition.
EM for Phrase-Based

Although north wind howls, but sky still very clear.

虽然北风呼啸，但天空依然十分清澈。

However, the sky remained clear under the strong north wind.

$$p(a_{i,i'} = \langle j, j' \rangle | F, E) = \frac{p(a_{i,i'} = \langle j, j' \rangle, F|E)}{p(F, E)}$$
Although north wind howls, but sky still very clear.

Although north wind howls, but sky still very clear.

EM for Phrase-Based

Can we compute this quantity?

\[p(a_{i,i'} = \langle j, j' \rangle | F, E) = \frac{p(a_{i,i'} = \langle j, j' \rangle, F|E)}{p(F, E)} \]
EM for Phrase-Based

Although north wind howls, but sky still very clear.

Although north wind howls, but sky still very clear.

However, the sky remained clear under the strong north wind.

\[
p(a_{i,i'} = \langle j, j' \rangle | F, E) = \frac{p(a_{i,i'} = \langle j, j' \rangle, F|E)}{p(F, E)}
\]

Can we compute this quantity?

How many 1-to-1 alignments are there of the remaining 8 Chinese and 8 English words?
Recap: Expectation Maximization

- Arbitrarily select a set of parameters (say, uniform).
- Calculate *expected counts* of the unseen events.
- Choose new parameters to maximize likelihood, using expected counts as proxy for observed counts.
- Iterate.
- Guaranteed that likelihood is monotonically nondecreasing.
Recap: Expectation Maximization

- Arbitrarily select a set of parameters (say, uniform).
- Calculate *expected counts* of the unseen events.
- Choose new parameters to maximize likelihood, using expected counts as proxy for observed counts.
- Iterate.
- Guaranteed that likelihood is monotonically nondecreasing.

Computing expectations from a phrase-based model, given a sentence pair, is \#P-Complete (by reduction to counting perfect matchings; DeNero & Klein, 2008)
Now What?

• Option #1: approximate expectations
 • Restrict computation to some tractable subset of the alignment space (arbitrarily biased).
 • Markov chain Monte Carlo (very slow).
Now What?

- Change the problem definition

- We already know how to learn word-to-word translation models efficiently.

- Idea: learn word-to-word alignments, extract most probable alignment, then treat it as observed.

- Learn phrase translations consistent with word alignments.

- Decouples alignment from model learning -- is this a good thing?
<table>
<thead>
<tr>
<th>watashi</th>
<th>open</th>
<th>the</th>
<th>box</th>
</tr>
</thead>
<tbody>
<tr>
<td>wa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hako</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>akemasu</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Phrase Extraction

<table>
<thead>
<tr>
<th>watashi</th>
<th>open</th>
<th>the</th>
<th>box</th>
</tr>
</thead>
<tbody>
<tr>
<td>wa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hako</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>akemasu</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

akemasu / open
I open the box

watashi wa / I
I open the box

watashi

wa

hako

wo

akemasu

watashi / I
<table>
<thead>
<tr>
<th>watashi</th>
<th>wa</th>
<th>hako</th>
<th>wo</th>
<th>akemasu</th>
</tr>
</thead>
<tbody>
<tr>
<td>I open</td>
<td>the</td>
<td>box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I open the box

watashi wa / I
<table>
<thead>
<tr>
<th>watashi</th>
<th>I open</th>
<th>the</th>
<th>box</th>
</tr>
</thead>
<tbody>
<tr>
<td>wa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hako</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>akemasu</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

hako wo / box
Phrase Extraction

<table>
<thead>
<tr>
<th>watashi</th>
<th>open</th>
<th>the</th>
<th>box</th>
</tr>
</thead>
<tbody>
<tr>
<td>wa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hako</td>
<td></td>
<td></td>
<td>wo</td>
</tr>
<tr>
<td>wo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>akemasu</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

hako wo / the box
I open the box

hako wo / open the box
<table>
<thead>
<tr>
<th>watashi</th>
<th>wa</th>
<th>hako</th>
<th>wo</th>
<th>akemasu</th>
</tr>
</thead>
<tbody>
<tr>
<td>I open</td>
<td>the</td>
<td>box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"hako wo" / open the box
I open the box

hako wo akemasu / open the box
Phrasal Translation Estimation
Phrasal Translation Estimation

- Approximation #1 (EM over restricted space)
- Align with a word-based model.
- Compute expectations only over alignments consistent with the alignment grid.
Phrasal Translation Estimation

• Approximation #1 (EM over restricted space)
 • Align with a word-based model.
 • Compute expectations only over alignments consistent with the alignment grid.

• Approximation #2 (heuristic estimation)
 • View phrase pairs as observed, irrespective of context or overlap.
 • By far the most common approach.
Phrasal Translation Estimation

- Approximation #1 (EM over restricted space)
 - Align with a word-based model.
 - Compute expectations only over alignments consistent with the alignment grid.

- Approximation #2 (heuristic estimation)
 - View phrase pairs as observed, irrespective of context or overlap.
 - By far the most common approach.
 - Many other possible approximations!
• Some key ingredients in Moses/Google Translate:
• Some key ingredients in Moses/Google Translate:
 • Phrase-based translation models
Some key ingredients in Moses/Google Translate:

- Phrase-based translation models
- ... Learned heuristically from word alignments