Phrase-based models

Barry Haddow (slides by Philipp Koehn)

6th September 2011, Trento
Outline

• From word-based to phrase-based

• Creating the phrase table

• The log-linear model and the “standard” phrase-based MT features

• Lexicalised re-ordering
Motivation

• Word-Based Models translate *words* as atomic units

• Phrase-Based Models translate *phrases* as atomic units

• Advantages:
 – many-to-many translation can handle non-compositional phrases
 – use of local context in translation
 – the more data, the longer phrases can be learned

• "Standard Model", used by Google Translate and others
• Foreign input is segmented into phrases
• Each phrase is translated into English
• Phrases are reordered
Phrase Translation Table

- Main knowledge source: table with phrase translations and their probabilities
- Example: phrase translations for natuerlich

| Translation | Probability $\phi(\tilde{e}|f)$ |
|------------------|----------------------------------|
| of course | 0.5 |
| naturally | 0.3 |
| of course , | 0.15 |
| , of course , | 0.05 |
Real Example

- Phrase translations for *den Vorschlag* learned from the Europarl corpus:

| English | $\phi(\tilde{e}|f)$ | English | $\phi(\tilde{e}|f)$ |
|--------------------|----------------------|-------------------|----------------------|
| the proposal | 0.6227 | the suggestions | 0.0114 |
| ’s proposal | 0.1068 | the proposed | 0.0114 |
| a proposal | 0.0341 | the motion | 0.0091 |
| the idea | 0.0250 | the idea of | 0.0091 |
| this proposal | 0.0227 | the proposal , | 0.0068 |
| proposal | 0.0205 | its proposal | 0.0068 |
| of the proposal | 0.0159 | it | 0.0068 |
| the proposals | 0.0159 | ... | ... |

- lexical variation (*proposal* vs *suggestions*)
- morphological variation (*proposal* vs *proposals*)
- included function words (*the*, *a*, ...)
- noise (*it*)
Linguistic Phrases?

- Model is not limited to linguistic phrases (noun phrases, verb phrases, prepositional phrases, ...)

- Example non-linguistic phrase pair

 \[
 \text{spass am} \rightarrow \text{fun with the}
 \]

- Prior noun often helps with translation of preposition

- Experiments show that limitation to linguistic phrases hurts quality
Probabilistic Model

• Bayes rule

\[e_{\text{best}} = \arg\max_e p(e|f) = \arg\max_e p(f|e) \cdot p_{\text{LM}}(e) \]

 – translation model \(p(e|f) \)
 – language model \(p_{\text{LM}}(e) \)

• Decomposition of the translation model

\[p(\bar{f}_1^I|\bar{e}_1^I) = \prod_{i=1}^{I} \phi(\bar{f}_i|\bar{e}_i) \cdot d(\text{start}_i - \text{end}_{i-1} - 1) \]

 – phrase translation probability \(\phi \)
 – reordering probability \(d \)
Distance-Based Reordering

Scoring function: \(d(x) = \alpha^{|x|} \) — exponential with distance
Learning a Phrase Translation Table

- Task: learn the model from a parallel corpus

- Three stages:
 - word alignment: using IBM models or other method
 - extraction of phrase pairs
 - scoring phrase pairs
Word Alignment

<table>
<thead>
<tr>
<th>michael</th>
<th>geht</th>
<th>davon</th>
<th>aus</th>
<th>dass</th>
<th>er</th>
<th>im</th>
<th>Haus</th>
<th>bleibt</th>
</tr>
</thead>
<tbody>
<tr>
<td>michael</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>assumes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>that</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>he</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>will</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>house</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
extract phrase pair consistent with word alignment:

assumes that / geht davon aus, dass
All words of the phrase pair have to align to each other.
Phrase pair \((\bar{e}, \bar{f})\) consistent with an alignment \(A\), if all words \(f_1, \ldots, f_n\) in \(\bar{f}\) that have alignment points in \(A\) have these with words \(e_1, \ldots, e_n\) in \(\bar{e}\) and vice versa:

\[
\begin{align*}
(\bar{e}, \bar{f}) \text{ consistent with } A & \iff \\
\forall e_i \in \bar{e} : (e_i, f_j) \in A & \rightarrow f_j \in \bar{f} \\
\text{AND } \forall f_j \in \bar{f} : (e_i, f_j) \in A & \rightarrow e_i \in \bar{e} \\
\text{AND } \exists e_i \in \bar{e}, f_j \in \bar{f} : (e_i, f_j) \in A
\end{align*}
\]
Phrase Pair Extraction

Smallest phrase pairs:

- michael — michael
- assumes — geht davon aus / geht davon aus ,
- that — dass / , dass
- he — er
- will stay — bleibt
- in the — im
- house — haus

unaligned words (here: German comma) lead to multiple translations
michael assumes — michael geht davon aus / michael geht davon aus,
assumes that — geht davon aus, dass ; assumes that he — geht davon aus, dass er
that he — dass er / , dass er ; in the house — im haus
michael assumes that — michael geht davon aus, dass
michael assumes that he — michael geht davon aus, dass er
michael assumes that he will stay in the house — michael geht davon aus, dass er im haus bleibt
assumes that he will stay in the house — geht davon aus, dass er im haus bleibt
that he will stay in the house — dass er im haus bleibt ; dass er im haus bleibt ,
he will stay in the house — er im haus bleibt ; will stay in the house — im haus bleibt

Phrases-Based Models
Scoring Phrase Translations

- Phrase pair extraction: collect all phrase pairs from the data
- Phrase pair scoring: assign probabilities to phrase translations
- Score by relative frequency:

\[
\phi(\bar{f}|\bar{e}) = \frac{\text{count}(\bar{e}, \bar{f})}{\sum_{\bar{f}_i} \text{count}(\bar{e}, \bar{f}_i)}
\]
Size of the Phrase Table

- Phrase translation table typically bigger than corpus
 ... even with limits on phrase lengths (e.g., max 7 words)

→ Too big to store in memory?

- Solution for training
 - extract to disk, sort, construct for one source phrase at a time

- Solutions for decoding
 - on-disk data structures with index for quick look-ups
 - suffix arrays to create phrase pairs on demand
Weighted Model

- Described standard model consists of three sub-models
 - phrase translation model $\phi(\tilde{f}|\tilde{e})$
 - reordering model d
 - language model $p_{LM}(e)$

$$e_{\text{best}} = \arg\max_{e} \prod_{i=1}^{I} \phi(\tilde{f}_{i}|\tilde{e}_{i}) d(\text{start}_{i} - \text{end}_{i-1} - 1) \prod_{i=1}^{\mid e \mid} p_{LM}(e_{i}|e_{1}...e_{i-1})$$

- Some sub-models may be more important than others

- Add weights λ_{ϕ}, λ_{d}, λ_{LM}

$$e_{\text{best}} = \arg\max_{e} \prod_{i=1}^{I} \phi(\tilde{f}_{i}|\tilde{e}_{i})^{\lambda_{\phi}} d(\text{start}_{i} - \text{end}_{i-1} - 1)^{\lambda_{d}} \prod_{i=1}^{\mid e \mid} p_{LM}(e_{i}|e_{1}...e_{i-1})^{\lambda_{LM}}$$
Log-Linear Model

• Such a weighted model is a log-linear model:

\[p(x) = \exp \sum_{i=1}^{n} \lambda_i h_i(x) \]

• Our feature functions

 – number of feature function \(n = 3 \)
 – random variable \(x = (e, f, \text{start}, \text{end}) \)
 – feature function \(h_1 = \log \phi \)
 – feature function \(h_2 = \log d \)
 – feature function \(h_3 = \log p_{\text{LM}} \)
Weighted Model as Log-Linear Model

\[p(e, a|f) = \exp(\lambda_\phi \sum_{i=1}^{I} \log \phi(\bar{f}_i|\bar{e}_i) + \lambda_d \sum_{i=1}^{I} \log d(a_i - b_{i-1} - 1)) + \lambda_{LM} \sum_{i=1}^{|e|} \log p_{LM}(e_i|e_1...e_{i-1}) \]
More Feature Functions

- Bidirectional alignment probabilities: $\phi(\bar{e}|\bar{f})$ and $\phi(\bar{f}|\bar{e})$

- Rare phrase pairs have unreliable phrase translation probability estimates
 \rightarrow lexical weighting with word translation probabilities

$$
\text{lex}(\bar{e}|\bar{f}, a) = \prod_{i=1}^{\text{length}(\bar{e})} \frac{1}{|\{j|(i,j) \in a\}|} \sum_{\forall (i,j) \in a} w(e_i|f_j)
$$
More Feature Functions

• Language model has a bias towards short translations
 → word count: \(wc(e) = \log |e|^\omega \)

• We may prefer finer or coarser segmentation
 → phrase count \(pc(e) = \log |I|^\rho \)

• Multiple language models

• Multiple translation models

• Other knowledge sources
Lexicalized Reordering

- Distance-based reordering model is weak
 → learn reordering preference for each phrase pair

- Three orientations types: (m) monotone, (s) swap, (d) discontinuous

\[
\text{orientation} \in \{m, s, d\}
\]
\[
p_o(\text{orientation}| \bar{f}, \bar{e})
\]
Learning Lexicalized Reordering

- Collect orientation information during phrase pair extraction
 - if word alignment point to the top left exists → monotone
 - if a word alignment point to the top right exists → swap
 - if neither a word alignment point to top left nor to the top right exists → neither monotone nor swap → discontinuous
Learning Lexicalized Reordering

- Estimation by relative frequency

\[
p_o(\text{orientation}) = \frac{\sum \bar{f} \sum \bar{e} \text{count}(\text{orientation}, \bar{e}, \bar{f})}{\sum_o \sum \bar{f} \sum \bar{e} \text{count}(o, \bar{e}, \bar{f})}
\]

- Smoothing with unlexicalized orientation model \(p(\text{orientation}) \) to avoid zero probabilities for unseen orientations

\[
p_o(\text{orientation}|\bar{f}, \bar{e}) = \frac{\sigma p(\text{orientation}) + \text{count}(\text{orientation}, \bar{e}, \bar{f})}{\sigma + \sum_o \text{count}(o, \bar{e}, \bar{f})}
\]
EM Training of the Phrase Model

- We presented a heuristic set-up to build phrase translation table (word alignment, phrase extraction, phrase scoring)

- Alternative: align phrase pairs directly with EM algorithm
 - initialization: uniform model, all $\phi(\bar{e}, \bar{f})$ are the same
 - expectation step:
 * estimate likelihood of all possible phrase alignments for all sentence pairs
 - maximization step:
 * collect counts for phrase pairs (\bar{e}, \bar{f}), weighted by alignment probability
 * update phrase translation probabilities $p(\bar{e}, \bar{f})$

- However: method easily overfits
 (learns very large phrase pairs, spanning entire sentences)
Summary

- Phrase Model
- Training the model
 - word alignment
 - phrase pair extraction
 - phrase pair scoring
- Log linear model
 - sub-models as feature functions
 - lexical weighting
 - word and phrase count features
- Lexicalized reordering model
- EM training of the phrase model