NCODE:
an Open Source Bilingual N-gram SMT Toolkit

Josep M. Crego, François Yvon and José B. Mariño
jmcrego@limsi.fr

September 5 – 10, 2011 - FBK, Trento (Italy)
Table of contents

Bilingual $n$-gram approach to SMT
  History
  Mainstream
  Formal device
  Main features

Decoding
  Search structure
  Algorithm
  Complexity and speed ups

The NCODE toolkit
  Training
  Inference
  Optimization

Comparison: NCODE vs. MOSES

Concluding remarks
Plan

Bilingual $n$-gram approach to SMT
- History
- Mainstream
- Formal device
- Main features

Decoding

The NCODE toolkit

Comparison: NCODE vs. MOSES

Concluding remarks
History

- Phrase-based approach (early 2000)
  - state-of-the-art results for many MT tasks
History

- Phrase-based approach (early 2000)
  - state-of-the-art results for many MT tasks
- Bilingual \( n \)-gram approach (an alternative to PBMT)
  - Derives from the finite-state perspective introduced by (Casacuberta and Vidal, 2003)
  - First implementation dates back to 2004 (Ph.D. at UPC)
  - Extended for the last three years (Postdoc at Limsi-CNRS)
Standard SMT mainstream

1. take a set of parallel sentences (*bitext*)
   - align each pair \((f, e)\), word for word
   - train translation model: the “phrase” table \(\{(f, e)\}\)
2. take a set of monolingual texts
   - train statistical target language model
3. make sure to tune your system
4. translate \(f = \arg\max \sum_{k=1}^{K} \lambda_k F_k(e, f)\)
5. evaluate
6. not happy? goto 1
Underlying formal device: finite-state SMT

- phrase-table lookup \([pt]\) is finite-state
- \(n\)-gram models \([lm]\) can be implemented as weighted FSA
Underlying formal device: finite-state SMT

- phrase-table lookup \([pt]\) is finite-state
- \(n\)-gram models \([lm]\) can be implemented as weighted FSA
- monotonic decode of \(f\):

\[
\mathbf{e}^* = \text{bestpath}(\pi_2(f \circ pt) \circ lm)
\]
Underlying formal device: finite-state SMT

- phrase-table lookup [\textit{pt}] is finite-state
- \textit{n-gram} models [\textit{lm}] can be implemented as weighted FSA
- monotonic decode of \textit{f}:
  \[ e^* = \text{bestpath}(\pi_2(f \circ pt) \circ lm) \]
- decode with reordering:
  \[ e^* = \text{bestpath}(\pi_2(\text{perm}(f) \circ pt) \circ lm) \]

\textit{perm}(f) is a word lattice (FSA) containing reordering hypotheses
Bilingual n-grams

- a **bilingual** n-gram language model as main translation model

  - Sequence of tuples (training bitexts):

<table>
<thead>
<tr>
<th>we</th>
<th>want</th>
<th>translations</th>
<th>perfect</th>
</tr>
</thead>
<tbody>
<tr>
<td>nous</td>
<td>voulons</td>
<td>des traductions</td>
<td>parfaites</td>
</tr>
</tbody>
</table>
Bilingual n-grams

- a **bilingual** n-gram language model as main translation model
  - Sequence of tuples (training bitexts):

    | we  | want | translations | perfect |
    |-----|------|--------------|---------|
    | nous| voulons | des traductions | parfaites |

- smaller units are more **reusable** than longer ones (less sparse)

    | we want | translations | perfect |
    | nous voulons | des traductions | parfaites |
Bilingual $n$-grams

- a **bilingual** $n$-gram language model as main translation model
  - Sequence of tuples (training bitexts):
    - we want translations perfect
    - nous voulons des traductions parfaits
  - smaller units are more **reusable** than longer ones (less sparse)
    - we want translations perfect
    - nous voulons des traductions parfaits
  - translation context introduced via tuple $n$-grams
    \[
p((s, t)_k | (s, t)_{k-1}, (s, t)_{k-2})
    \]
    multiple back-off schemes, smoothing techniques, etc.
### Tuples from word alignments

<table>
<thead>
<tr>
<th></th>
<th>parfaites</th>
<th>traductions</th>
<th>des</th>
<th>voulons</th>
<th>nous</th>
<th>we</th>
<th>want</th>
<th>perfect</th>
<th>translations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Tuples from word alignments

1 a unique segmentation of each sentence pair:

- no word in a tuple can be aligned to a word outside the tuple
- target-side words in tuples follow the original word order
- no smaller tuples can be found

<table>
<thead>
<tr>
<th></th>
<th>we</th>
<th>want</th>
<th>NULL</th>
<th>translations</th>
<th>perfect</th>
<th>parfaites</th>
</tr>
</thead>
<tbody>
<tr>
<td>nous</td>
<td>nous</td>
<td>voulons</td>
<td>des</td>
<td>traductions</td>
<td></td>
<td>parfaites</td>
</tr>
</tbody>
</table>
Tuples from word alignments

1. a **unique** segmentation of each sentence pair:
   - no word in a tuple can be aligned to a word outside the tuple
   - target-side words in tuples follow the original word order
   - no smaller tuples can be found

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{parfaites} & \text{traductions} & \text{des} & \text{voulons} & \text{nous} \\
\hline
\text{we} & \text{want} & \text{perfect} & \text{translations} \\
\hline
\end{array}
\]

2. source-NULLled units are not allowed (complexity issues):
   - attach the target word to the **previous**/next tuple

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{we} & \text{want} & \text{NULL} & \text{translations} & \text{perfect} \\
\text{nous} & \text{voulons} & \text{des} & \text{traductions} & \text{parfaites} \\
\hline
\end{array}
\]
Coupling reordering and decoding

\[ e^* = \text{bestpath}(\pi_2(\text{perm}(f) \circ pt) \circ lm) \]

- \textit{perm} is responsible of the NP-completeness of SMT
Coupling reordering and decoding

\[ e^* = bestpath(\pi_2(\text{perm}(f) \circ pt) \circ lm) \]

- \text{perm} is responsible of the NP-completeness of SMT

Problem: Full permutations \textbf{computationally too expensive (EXP search)}
Coupling reordering and decoding

\[ e^* = \text{bestpath}(\pi_2(\text{perm}(f) \circ pt) \circ lm) \]

- **perm** is responsible of the NP-completeness of SMT

**Problem:** Full permutations computationally too expensive (EXP search)

**Sol1:** Heuristic constraints (distance-based): IBM, ITG, etc.
POLY search, but little correlation with language
Coupling reordering and decoding

\[ e^* = \text{bestpath}(\pi_2(\text{perm}(f) \circ pt) \circ lm) \]

- \textbf{perm} is responsible of the NP-completeness of SMT

**Problem:** Full permutations computationally too expensive (EXP search)

**Sol1:** Heuristic constraints (distance-based): IBM, ITG, \textit{etc.} POLY search, but little correlation with language

**Sol2:** Linguistically-founded rewrite rules:
- \textbf{learn reordering rules} from the bitext word alignments
  \textbf{perfect translations} \sim \textbf{translations perfect}
- compose rules as a reordering transducer: \[ R = \circ_i (r_i \cup Id) \]
- in decoding: \[ \text{perm}(f) = f \circ R \]

\textit{perm}(f) is a word lattice (FSA) with reordering hypotheses
Plan

Bilingual $n$-gram approach to SMT

Decoding
  Search structure
  Algorithm
  Complexity and speed ups

The NCODE toolkit

Comparison: NCODE vs. MOSES

Concluding remarks
Search structure

- Exhaustive search is *unfeasible* $\leadsto$ pruning needed!
Search structure

- Exhaustive search is *unfeasible* $\leadsto$ pruning needed!
- Important: which hypotheses are compared to be pruned?
Search structure

- Exhaustive search is *unfeasible* $\Rightarrow$ pruning needed!
- **Important**: which hypotheses are compared to be pruned?
- **Solution**: use multiple stacks
- **Moses**: $[I]$ stacks (hyps. generating the *same number* of words)
  - **Problem**: Search bias (translate first 'easiest' segments)
  - **Solution**: Use future cost estimation ($A^*$)
Search structure

- Exhaustive search is *unfeasible* $\leadsto$ pruning needed!
- **Important**: which hypotheses are compared to be pruned?
- **Solution**: use multiple stacks
  - **Moses**: $[I]$ stacks (hyps. generating the same number of words)
    + **Problem**: Search bias (translate first 'easiest' segments)
    + **Solution**: Use future cost estimation ($A^*$)

Feature cost estimation problem for **Ncode**
(multiple $n$-gram LMs without accurate estimations)
Search structure

- Exhaustive search is *unfeasible* $\rightsquigarrow$ pruning needed!
- **Important**: which hypotheses are compared to be pruned?
- **Solution**: use multiple stacks
  - **Moses**: $[I]$ stacks (hyps. generating the *same number* of words)
    - **Problem**: Search bias (translate first 'easiest' segments)
    - **Solution**: Use future cost estimation ($A^*$)
  - **Ncode**: $[2^J]$ stacks (hyps. translating the *same* input words)
    - **Highly fair comparisons**
    - **Problem**: efficiency problem ($2^J$)
    - **Solution**: limit reordering (linguistically motivated)
Search algorithm (sketched)

- Word lattice encoding permutations (up to $2^J$ nodes)

- Word lattice $G$ as input of the search algorithm
Search algorithm (sketched)

- Word lattice encoding permutations (up to $2^J$ nodes)
- Partial translation hypotheses (up to $2^J$ stacks)

- word lattice $G$ as input of the search algorithm
- nodes of the input lattice are transformed into search stacks after being topologically sorted
Search algorithm (sketched)

- Word lattice encoding permutations (up to $2^J$ nodes)
- Partial translation hypotheses (up to $2^J$ stacks)

- word lattice $G$ as input of the search algorithm
- nodes of the input lattice are transformed into search stacks after being topologically sorted
- search starts setting the empty hypothesis in stack $(0^J)$
Search algorithm (sketched)

- Word lattice encoding permutations (up to $2^J$ nodes)
- Partial translation hypotheses (up to $2^J$ stacks)

---

- word lattice $G$ as input of the search algorithm
- nodes of the input lattice are transformed into search stacks after being topologically sorted
- search starts setting the empty hypothesis in stack ($0^J$)
- it proceeds expanding hypotheses in the stacks following the topological sort
Search algorithm (sketched)

- Word lattice encoding permutations (up to $2^J$ nodes)
- Partial translation hypotheses (up to $2^J$ stacks)

- word lattice $G$ as input of the search algorithm
- nodes of the input lattice are transformed into search stacks after being topologically sorted
- search starts setting the empty hypothesis in stack ($0^J$)
- it proceeds expanding hypotheses in the stacks following the topological sort
- Translation output through tracing back the best hypothesis of the ending stacks
Search complexity and speed ups

- Complexity: upper bound of the number of hypotheses valued for an exhaustive search:
  \[ 2^J \times \left( |V_u|^{n_1-1} \times |V_t|^{n_2-1} \right) \]

  - \( J \) is the length of the input sentence,
  - \( |V_u| \) is the size of the vocabulary of translation units,
  - \( |V_t| \) is the size of the target vocabulary.
  - \( n_1/n_2 \) are the order of the bilingual/target \( n \)-gram LMs,
Search complexity and speed ups

- **Complexity:** upper bound of the number of hypotheses valued for an exhaustive search:
  
  \[ 2^J \times (|V_u|^{n_1-1} \times |V_t|^{n_2-1}) \]

  - \( J \) is the length of the input sentence,
  - \(|V_u|\) is the size of the vocabulary of translation units,
  - \(|V_t|\) is the size of the target vocabulary.
  - \( n_1/n_2 \) are the order of the bilingual/target \( n \)-gram LMs,

- **Speed ups:**
  - Recombination: exact (unless \( N \)-best output required)
  - \( i \)-best hypotheses within a stack (beam pruning)
  - \( i \)-best translation choices (based on uncontextualized scores)
  - prune reordering rules (reduce the size of the input lattice)
  - use several threads (when possible)
Plan

Bilingual $n$-gram approach to SMT

Decoding

The **NCODE toolkit**
- Training
- Inference
- Optimization

Comparison: **NCODE vs. MOSES**

Concluding remarks
Model estimation

training.perl [--first-step --last-step --output-dir]

- **N** CODE systems are built from a training bitext (f,e) and the corresponding word alignment (A). Part-of-speeches (f.pos) are (typically) used to learn rewrite rules.
- Target n-gram LMs are **not** estimated within training.perl.
- Training is deployed over 8 steps.
Model estimation

Step 0: lexicon distribution

- Distributions computed based on counts using word alignments:

$$P_{\text{lex}}(e, f) = \frac{\text{count}(f, e)}{\sum_{f'} \text{count}(f', e)} ; \quad P_{\text{lex}}(f, e) = \frac{\text{count}(f, e)}{\sum_{e'} \text{count}(f, e')}$$

- **NULL** tokens are considered (to allow tuples with **NULL** target side)
Model estimation

Step 1: tuple extraction

- **Unfold** technique previously outlined:

   **Minimal segmentation of source/target training sentences, following alignments and allowing source distortion**
Model estimation

Step 2: tuple refinement (src-NULLed units)

- Source-NULLed words (\textit{NULL}|||\textit{des}) are attached to the previous or the next unit, after evaluating the likelihood of both alternatives using the unit lexicon distribution $P_{lw}(e, f)$ (next slide):

$$\max \begin{cases} P_{lw}(\text{want}|||\text{voulons des}) \times P_{lw}(\text{translations}|||\text{traductions}) & \text{attachment : previous} \\ P_{lw}(\text{want}|||\text{voulons}) \times P_{lw}(\text{translations}|||\text{des traductions}) & \text{attachment : next} \end{cases}$$
Model estimation

Step 3: tuple pruning & uncontextualized distributions [--max-tuple-length --max-tuple-fert --tuple-nbest]

- Tuples filtered following several constraints (length, fertility, n-best translation choices per source segment)

- Conditional probability (x2): \( P_{rf}(e, f) = \frac{\text{count}(f, e)}{\sum_{f'} \text{count}(f', e)} \); \( P_{rf}(f, e) = \frac{\text{count}(f, e)}{\sum_{e'} \text{count}(f, e')} \)

- Lexicon weights (x2):
  \( P_{lw}(e, f) = \frac{1}{(J+1)^l} \prod_{i=1}^{l} \sum_{j=0}^{J} P_{lex}(e, f) \); \( P_{lw}(f, e) = \frac{1}{(l+1)^J} \prod_{j=1}^{J} \sum_{i=0}^{l} P_{lex}(f, e) \)
Model estimation

Step 4: bilingual n-gram lm [--train-src-bm --train-trg-bm --options-bm --name-src-bm --name-trg-bm]

- Standard n-gram LM (units built from words):
  \[ p(f^j_1, e^1_i) = \prod_{k=1}^{K} p((f, e)_k|(f, e)_{k-1}, \ldots, (f, e)_{k-n+1}) \]

- Options passed to SriLM, Ex: --options-bm -order_3_-unk_-gt3min_1_-kndiscount_-interpolate
Model estimation

Step 4: bilingual n-gram lm

```
[--train-src-bm --train-trg-bm --options-bm --name-src-bm --name-trg-bm]
```

- Bilingual units built from: POS-tags, lemmas, etc., or any src/trg combination. Ex:
  
  \[(f, e)^{wrd} : \text{'translations'}|||\text{traductions'}\]
  \[(f, e)^{lem} : \text{'translation'}|||\text{traduction'}\]
  \[(f, e)^{pos} : \text{'NNS'}|||\text{Noun'}\]
  \[(f, e)^{lem:pos} : \text{'translation'}|||\text{Noun'}\]

- Each unit (---train-src ---train-trg) is assign to one token (---train-src-bm ---train-trg-bm)
Model estimation

Step 5: rewrite rules (POS-based) \([-\text{max-rule-length} \text{ --max-rule-cost}\]

- Rewrite rules are automatically learned from the bitext word alignments.
- POS tags are used to gain generalization power.
- Rules are filtered according to: 

\[
P(f \leadsto f') = \frac{\text{count}(f, f')}{\sum_{f' \in \text{perm}(f)} \text{count}(f, f')}
\]
Model estimation

Step 6: lexicalized reordering

- **Four** orientation types: (m)onotone order; (s)wap with previous tuple; (f)orward jump; (b)ackward jump. And **two** aggregated types: (d)iscontinuous: (b) and (f); and (c)ontinuous: (m) and (s)

- Smoothed maximum likelihood estimator, \( \sigma = 1/ \sum_o \text{count}(o, f, e) \):

\[
P(\text{orientation}|f, e) = \frac{\sigma/4 + \text{count}(\text{orientation}, f, e)}{\sigma + \sum_o \text{count}(o, f, e)}
\]
Model estimation

Step 7: source (unfolded) n-gram lm [--train-src-unf --options-sm --name-src-unf]

- n-gram LM estimated over reordered training source words (lemmas, POS, etc.)
- Reordering introduced in the tuple extraction process. Ex: 'we want translations perfect'
- Options passed to SRI LM, Ex: --options-sm -order_5_-unk_-kndiscount_-interpolate
Inference

**binrules [-wrds -tags -rrules s -maxr i -maxc f]**

- Rules extracted from reorderings introduced in the tuple extraction
  
  \[
  \text{translations perfect} \rightarrow \text{perfect translations}
  \]

- Referred to source-side tokens (words, POS, etc.): NNS JJ \rightarrow JJ NNS

- Filter rules (discard noisy alignments) maxr=10 (size) maxc=4 (cost, -logP)
Inference

binfiltr

- Collect useful information for given test sentences
- Filter tuples (discard noisy alignments) maxs=6 (size)
- Bilingual/source/target factors used with bilingual/source/target n-gram LMs
- Multiple LM’s referred to multiple factors can be used
- Sentence-based LM’s also available
Inference

binco (weights) (files) (search settings)

- Model weights
- Files: (input) language models, filtered input (output) 1-best target word/translation unit hypotheses, Search graph, N-best hypotheses (OPENFST)
- Search settings: beam size, translation choices, input (OOV) words strategy, threads, etc.
Optimization (MERT)

- mert-run.perl
  - A wrapper for the MERT software made available in the Moses toolkit (soon also ZMERT)
Optimization (MERT)

- Translates a given input file using the optimized model weights
Plan

Bilingual $n$-gram approach to SMT

Decoding

The NCODE toolkit

Comparison: NCODE vs. MOSES

Concluding remarks
Experimental framework

- **French-to-German** (2) tasks:
  - **news**: News Commentary corpus (6th Workshop on SMT, WMT11)
  - **full**: Additional data (up to 4 million sentence pairs)
- **Tune**: newstest2010, **Test**: newstest2009, newstest2011
- Same alignment (**GIZA++**), target LM (**SRILM**)
- **NCODE** employs **TREE TAGGER** POS tags (rewrite rules)
- **default** **MOSES** settings: 14 features
- **default** **NCODE** settings: 14 + 2 features:
  - Bilingual $n$-gram over tuples built from **words**
  - Bilingual $n$-gram over tuples built from **POS tags**
## Performance results

**BLEU**: Translation accuracy  
**#units**: Number of phrases/tuples (millions) after training (limited to 6 tokens)  
**Memory**: Memory (Mb) used by each decoder  
**Speed**: Decoding speed (Words/second) (single-threaded translations)

<table>
<thead>
<tr>
<th>System</th>
<th>Task</th>
<th>BLEU</th>
<th>#units</th>
<th>Memory</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><strong>newstest2009</strong></td>
<td><strong>newstest2011</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCODE</td>
<td>news</td>
<td>13.89</td>
<td>13.83</td>
<td>0.5</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>15.09</td>
<td>15.26</td>
<td>7.5</td>
<td>9</td>
</tr>
<tr>
<td>MOSES</td>
<td>news</td>
<td>13.70</td>
<td>13.51</td>
<td>7.5</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>14.66</td>
<td>14.51</td>
<td>141</td>
<td>16</td>
</tr>
</tbody>
</table>

- Slightly higher accuracy results for NCODE (within the confidence margin)  
- NCODE outperforms MOSES in data efficiency:  
  - smaller set of tuples than phrases (full: 20 times smaller)  
  - lower memory needs for NCODE (full: \( \sim \) half than MOSES)  
- Nearly twice faster (search pruning settings are not tested)
Performance results

**BLEU**: Translation accuracy

**#units**: Number of phrases/tuples (millions) after training (limited to 6 tokens)

**Memory**: Memory (Mb) used by each decoder

**Speed**: Decoding speed (Words/second) (single-threaded translations)

<table>
<thead>
<tr>
<th>System</th>
<th>Task</th>
<th>BLEU</th>
<th>#units</th>
<th>Memory</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><em>newstest2009</em></td>
<td><em>newstest2011</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>NCODE</strong></td>
<td><em>news</em></td>
<td>13.89</td>
<td>13.83</td>
<td>0.5</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td><em>full</em></td>
<td>15.09</td>
<td>15.26</td>
<td>7.5</td>
<td>9</td>
</tr>
<tr>
<td><strong>Moses</strong></td>
<td><em>news</em></td>
<td>13.70</td>
<td>13.51</td>
<td>7.5</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td><em>full</em></td>
<td>14.66</td>
<td>14.51</td>
<td>141</td>
<td>16</td>
</tr>
</tbody>
</table>

- Slightly higher accuracy results for **NCODE** (within the confidence margin)
## Performance results

**BLEU** : Translation accuracy  
**#units** : Number of phrases/tuples (millions) after training (limited to 6 tokens)  
**Memory** : Memory (Mb) used by each decoder  
**Speed** : Decoding speed (Words/second) (single-threaded translations)

<table>
<thead>
<tr>
<th>System</th>
<th>Task</th>
<th>BLEU</th>
<th>#units</th>
<th>Memory</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><strong>newstest2009</strong></td>
<td><strong>newstest2011</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCODE</td>
<td>news</td>
<td>13.89</td>
<td>13.83</td>
<td>0.5</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>15.09</td>
<td>15.26</td>
<td>7.5</td>
<td>9</td>
</tr>
<tr>
<td>MOSES</td>
<td>news</td>
<td>13.70</td>
<td>13.51</td>
<td>7.5</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>14.66</td>
<td>14.51</td>
<td>141</td>
<td>16</td>
</tr>
</tbody>
</table>

- Slightly higher accuracy results for **NCODE** (within the confidence margin)  
- **NCODE** outperforms **MOSES** in data efficiency:  
  - smaller set of tuples than phrases (full: 20 times smaller)  
  - lower memory needs for **NCODE** (full: ~ half than **MOSES**)
Performance results

**BLEU** : Translation accuracy

**#units** : Number of phrases/tuples (millions) after training (limited to 6 tokens)

**Memory** : Memory (Mb) used by each decoder

**Speed** : Decoding speed (Words/second) (single-threaded translations)

<table>
<thead>
<tr>
<th>System</th>
<th>Task</th>
<th>BLEU newstest2009</th>
<th>BLEU newstest2011</th>
<th>#units</th>
<th>Memory</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>newstest2009</td>
<td>newstest2011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCODE</td>
<td>news</td>
<td>13.89</td>
<td>13.83</td>
<td>0.5</td>
<td>7.7</td>
<td>54.4</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>15.09</td>
<td>15.26</td>
<td>7.5</td>
<td>9</td>
<td>33.9</td>
</tr>
<tr>
<td>MOSSES</td>
<td>news</td>
<td>13.70</td>
<td>13.51</td>
<td>7.5</td>
<td>7.9</td>
<td>23.1</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>14.66</td>
<td>14.51</td>
<td>141</td>
<td>16</td>
<td>14.7</td>
</tr>
</tbody>
</table>

- Slightly higher accuracy results for **NCODE** (within the confidence margin)
- **NCODE** outperforms **Moses** in data efficiency:
  - smaller set of tuples than phrases (full: 20 times smaller)
  - lower memory needs for **NCODE** (full: ~ half than **Moses**)
- Nearly twice faster (search pruning settings are **not** tested)
Plan

Bilingual $n$-gram approach to SMT

Decoding

The NCODE toolkit

Comparison: NCODE vs. MOSES

Concluding remarks
Concluding remarks

- Developed to run on Linux systems
- Written in Perl and C++
- Prerequisites
  - to compile: kenlm and OpenFst libraries
  - to run: SRI LM and the MERT implementation in Moses
Concluding remarks

- Developed to run on Linux systems
- Written in Perl and C++
- Prerequisites
  - to compile: kenlm and OpenFst libraries
  - to run: SRI LM and the MERT implementation in Moses
- Multithreaded
- (Multiple) src/trg/bil n-gram LM’s handled by kenlm
- Factored src/trg/bil n-gram LM’s
Concluding remarks

- Developed to run on Linux systems
- Written in Perl and C++
- Prerequisites
  - to compile: kenlm and OpenFst libraries
  - to run: SriLM and the MERT implementation in Moses
- Multithreaded
- (Multiple) src/trg/bil n-gram LM’s handled by kenlm
- Factored src/trg/bil n-gram LM’s
- Under development:
  - Client/server architecture
  - Optimization by ZMERT
  - Sentence-based bonus models
Thanks

Ncode is freely available at http://ncode.limsi.fr/
(http://www.limsi.fr/Individu/jmcrego/bin coder/)

Adrià de Gispert, Patrik Lambert, Marta Ruiz, Alexandre Allauzen, Aurélien Max,
Thomas Lavergne and Artem Sokolov also contributed to create the toolkit.

crego@systran.fr

now at SYSTRAN
Language Translation Technologies