Chapter 6

Decoding

Statistical Machine Translation
Decoding

• We have a mathematical model for translation

\[p(e|f) \]

• Task of decoding: find the translation \(e_{\text{best}} \) with highest probability

\[e_{\text{best}} = \text{argmax}_e \ p(e|f) \]

• Two types of error
 – the most probable translation is bad → fix the model
 – search does not find the most probable translation → fix the search

• Decoding is evaluated by search error, not quality of translations (although these are often correlated)
Translation Process

- Task: translate this sentence from German into English

er geht ja nicht nach hause
Translation Process

- Task: translate this sentence from German into English

 er geht ja nicht nach hause

- Pick phrase in input, translate

Chapter 6: Decoding
Translation Process

- Task: translate this sentence from German into English

er geht ja nicht nach hause

- Pick phrase in input, translate
 - it is allowed to pick words out of sequence reordering
 - phrases may have multiple words: many-to-many translation
Translation Process

• Task: translate this sentence from German into English

\[\text{er geht ja nicht nach hause} \]

\[\text{he does not go} \]

• Pick phrase in input, translate
Translation Process

- Task: translate this sentence from German into English

 er geht ja nicht nach hause

 he does not go home

- Pick phrase in input, translate

Chapter 6: Decoding
Computing Translation Probability

- Probabilistic model for phrase-based translation:

$$e_{\text{best}} = \arg\max_e \prod_{i=1}^I \phi(f_i|e_i) \cdot d(start_i - end_{i-1} - 1) \cdot p_{LM}(e)$$

- Score is computed incrementally for each partial hypothesis

- Components

 Phrase translation Picking phrase f_i to be translated as a phrase e_i
 → look up score $\phi(f_i|e_i)$ from phrase translation table

 Reordering Previous phrase ended in end_{i-1}, current phrase starts at $start_i$
 → compute $d(start_i - end_{i-1} - 1)$

 Language model For n-gram model, need to keep track of last $n-1$ words
 → compute score $p_{LM}(w_i|w_{i-(n-1)}, \ldots, w_{i-1})$ for added words w_i
• Many translation options to choose from
 – in Europarl phrase table: 2727 matching phrase pairs for this sentence
 – by pruning to the top 20 per phrase, 202 translation options remain
• The machine translation decoder does not know the right answer
 – picking the right translation options
 – arranging them in the right order

→ Search problem solved by heuristic beam search
Decoding: Precompute Translation Options

consult phrase translation table for all input phrases
Decoding: Start with Initial Hypothesis

er
geht
ja
nicht
nach
hause

initial hypothesis: no input words covered, no output produced
Decoding: Hypothesis Expansion

pick any translation option, create new hypothesis
Decoding: Hypothesis Expansion

create hypotheses for all other translation options
Decoding: Hypothesis Expansion

also create hypotheses from created partial hypothesis
Decoding: Find Best Path

er geht ja nicht nach hause

backtrack from highest scoring complete hypothesis
Computational Complexity

• The suggested process creates exponential number of hypothesis

• Machine translation decoding is NP-complete

• Reduction of search space:
 – recombination (risk-free)
 – pruning (risky)
Recombination

- Two hypothesis paths lead to two matching hypotheses
 - same number of foreign words translated
 - same English words in the output
 - different scores

- Worse hypothesis is dropped
Recombination

- Two hypothesis paths lead to hypotheses indistinguishable in subsequent search
 - same number of foreign words translated
 - same last two English words in output (assuming trigram language model)
 - same last foreign word translated
 - different scores

- Worse hypothesis is dropped
Restrictions on Recombination

- **Translation model:** Phrase translation independent from each other → no restriction to hypothesis recombination

- **Language model:** Last $n-1$ words used as history in n-gram language model → recombined hypotheses must match in their last $n-1$ words

- **Reordering model:** Distance-based reordering model based on distance to end position of previous input phrase → recombined hypotheses must have that same end position

- Other feature function may introduce additional restrictions
Pruning

• Recombination reduces search space, but not enough
 (we still have a NP complete problem on our hands)

• Pruning: remove bad hypotheses early
 – put comparable hypothesis into stacks
 (hypotheses that have translated same number of input words)
 – limit number of hypotheses in each stack
• Hypothesis expansion in a stack decoder
 – translation option is applied to hypothesis
 – new hypothesis is dropped into a stack further down
Stack Decoding Algorithm

1: place empty hypothesis into stack 0
2: for all stacks 0...n − 1 do
3: for all hypotheses in stack do
4: for all translation options do
5: if applicable then
6: create new hypothesis
7: place in stack
8: recombine with existing hypothesis if possible
9: prune stack if too big
10: end if
11: end for
12: end for
13: end for
Pruning

• Pruning strategies
 – histogram pruning: keep at most k hypotheses in each stack
 – stack pruning: keep hypothesis with score $\alpha \times$ best score ($\alpha < 1$)

• Computational time complexity of decoding with histogram pruning

 $O(\text{max stack size} \times \text{translation options} \times \text{sentence length})$

• Number of translation options is linear with sentence length, hence:

 $O(\text{max stack size} \times \text{sentence length}^2)$

• Quadratic complexity
Reordering Limits

- Limiting reordering to maximum reordering distance

- Typical reordering distance 5–8 words
 - depending on language pair
 - larger reordering limit hurts translation quality

- Reduces complexity to linear

\[O(\text{max stack size} \times \text{sentence length}) \]

- Speed / quality trade-off by setting maximum stack size
Translating the Easy Part First?

The tourism initiative addresses this for the first time.

Both hypotheses translate 3 words. The worse hypothesis has a better score.
Estimating Future Cost

- Future cost estimate: how expensive is translation of rest of sentence?

- Optimistic: choose cheapest translation options

- Cost for each translation option
 - **translation model**: cost known
 - **language model**: output words known, but not context
 → estimate without context
 - **reordering model**: unknown, ignored for future cost estimation
Cost Estimates from Translation Options

the tourism initiative addresses this for the first time

-1.0 -2.0 -1.5 -2.4 -1.4 -1.0 -1.0 -1.9 -1.6

-4.0 -2.5 -2.2

-1.3 -2.4

-2.7

-2.3

-2.3

-2.3

cost of cheapest translation options for each input span (log-probabilities)
Cost Estimates for all Spans

- Compute cost estimate for all contiguous spans by combining cheapest options

<table>
<thead>
<tr>
<th>first word</th>
<th>future cost estimate for (n) words (from first)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>the</td>
<td>-1.0</td>
</tr>
<tr>
<td>tourism</td>
<td>-2.0</td>
</tr>
<tr>
<td>initiative</td>
<td>-1.5</td>
</tr>
<tr>
<td>addresses</td>
<td>-2.4</td>
</tr>
<tr>
<td>this</td>
<td>-1.4</td>
</tr>
<tr>
<td>for</td>
<td>-1.0</td>
</tr>
<tr>
<td>the</td>
<td>-1.0</td>
</tr>
<tr>
<td>first</td>
<td>-1.9</td>
</tr>
<tr>
<td>time</td>
<td>-1.6</td>
</tr>
</tbody>
</table>

- Function words cheaper (the: -1.0) than content words (tourism -2.0)
- Common phrases cheaper (for the first time: -2.3) than unusual ones (tourism initiative addresses: -5.9)
Combining Score and Future Cost

- Hypothesis score and future cost estimate are combined for pruning

 - left hypothesis starts with hard part: the tourism initiative
 score: -5.88, future cost: -6.1 → total cost -11.98

 - middle hypothesis starts with easiest part: the first time
 score: -4.11, future cost: -9.3 → total cost -13.41

 - right hypothesis picks easy parts: this for ... time
 score: -4.86, future cost: -9.1 → total cost -13.96
Other Decoding Algorithms

- A* search
- Greedy hill-climbing
- Using finite state transducers (standard toolkits)
- Stochastic Search
A* Search

- Uses *admissible* future cost heuristic: never overestimates cost
- Translation agenda: create hypothesis with lowest score + heuristic cost
- Done, when complete hypothesis created

Chapter 6: Decoding
Greedy Hill-Climbing

• Create one complete hypothesis with depth-first search (or other means)

• Search for better hypotheses by applying change operators
 – change the translation of a word or phrase
 – combine the translation of two words into a phrase
 – split up the translation of a phrase into two smaller phrase translations
 – move parts of the output into a different position
 – swap parts of the output with the output at a different part of the sentence

• Terminates if no operator application produces a better translation
Summary

• Translation process: produce output left to right

• Translation options

• Decoding by hypothesis expansion

• Reducing search space
 – recombination
 – pruning (requires future cost estimate)

• Other decoding algorithms