Chapter 5

Phrase-based models

Statistical Machine Translation
Motivation

• Word-Based Models translate *words* as atomic units

• Phrase-Based Models translate *phrases* as atomic units

• Advantages:
 – many-to-many translation can handle non-compositional phrases
 – use of local context in translation
 – the more data, the longer phrases can be learned

• ”Standard Model”, used by Google Translate and others
Phrase-Based Model

- Foreign input is segmented in phrases
- Each phrase is translated into English
- Phrases are reordered

natuerlich → of course
hat → john
john → has
spass am → fun with the
spiel → game
Phrase Translation Table

- Main knowledge source: table with phrase translations and their probabilities
- Example: phrase translations for natuerlich

| Translation | Probability $\phi(\bar{e}|f)$ |
|-------------------|--------------------------------|
| of course | 0.5 |
| naturally | 0.3 |
| of course , | 0.15 |
| , of course , | 0.05 |
Real Example

- Phrase translations for den Vorschlag learned from the Europarl corpus:

| English | $\phi(\bar{e}|f)$ | English | $\phi(\bar{e}|f)$ |
|------------------|-------------------|------------------|-------------------|
| the proposal | 0.6227 | the suggestions | 0.0114 |
| 's proposal | 0.1068 | the proposed | 0.0114 |
| a proposal | 0.0341 | the motion | 0.0091 |
| the idea | 0.0250 | the idea of | 0.0091 |
| this proposal | 0.0227 | the proposal , | 0.0068 |
| proposal | 0.0205 | its proposal | 0.0068 |
| of the proposal | 0.0159 | it | 0.0068 |
| the proposals | 0.0159 | ... | ... |

- lexical variation (proposal vs suggestions)
- morphological variation (proposal vs proposals)
- included function words (the, a, ...)
- noise (it)
Linguistic Phrases?

• Model is not limited to linguistic phrases
 (noun phrases, verb phrases, prepositional phrases, ...)

• Example non-linguistic phrase pair

 \text{spass am} \rightarrow \text{fun with the}

• Prior noun often helps with translation of preposition

• Experiments show that limitation to linguistic phrases hurts quality
Probabilistic Model

• Bayes rule

\[e_{\text{best}} = \arg\max_e p(e|f) \]
\[= \arg\max_e p(f|e) p_{LM}(e) \]

– translation model \(p(e|f) \)
– language model \(p_{LM}(e) \)

• Decomposition of the translation model

\[p(\tilde{f}_I^I|\tilde{e}_I^I) = \prod_{i=1}^{I} \phi(\tilde{f}_i|\tilde{e}_i) \ d(\text{start}_i - \text{end}_{i-1} - 1) \]

– phrase translation probability \(\phi \)
– reordering probability \(d \)
Distance-Based Reordering

<table>
<thead>
<tr>
<th>phrase</th>
<th>translates</th>
<th>movement</th>
<th>distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1–3</td>
<td>start at beginning</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>skip over 4–5</td>
<td>+2</td>
</tr>
<tr>
<td>3</td>
<td>4–5</td>
<td>move back over 4–6</td>
<td>-3</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>skip over 6</td>
<td>+1</td>
</tr>
</tbody>
</table>

Scoring function: $d(x) = \alpha^{|x|}$ — exponential with distance
Learning a Phrase Translation Table

- Task: learn the model from a parallel corpus

- Three stages:
 - word alignment: using IBM models or other method
 - extraction of phrase pairs
 - scoring phrase pairs
Michael assumes that he will stay in the house.

Chapter 5: Phrase-Based Models
extract phrase pair consistent with word alignment:

assumes that / geht davon aus, dass
All words of the phrase pair have to align to each other.
Consistent phrase pair \((\bar{e}, \bar{f})\) consistent with an alignment \(A\), if all words \(f_1, ..., f_n\) in \(\bar{f}\) that have alignment points in \(A\) have these with words \(e_1, ..., e_n\) in \(\bar{e}\) and vice versa:

\[
(\bar{e}, \bar{f}) \text{ consistent with } A \iff \\
\forall e_i \in \bar{e}: (e_i, f_j) \in A \rightarrow f_j \in \bar{f} \\
\text{AND } \forall f_j \in \bar{f}: (e_i, f_j) \in A \rightarrow e_i \in \bar{e} \\
\text{AND } \exists e_i \in \bar{e}, f_j \in \bar{f}: (e_i, f_j) \in A
\]
Phrase Pair Extraction

Smallest phrase pairs:

- michael — michael
- assumes — geht davon aus / geht davon aus ,
- that — dass / , dass
- he — er
- will stay — bleibt
- in the — im
- house — haus

unaligned words (here: German comma) lead to multiple translations
Larger Phrase Pairs

Michael assumes — Michael geht davon aus / Michael geht davon aus,
assumes that — geht davon aus, dass; assumes that he — geht davon aus, dass er
that he — dass er /, dass er; in the house — im haus
Michael assumes that — Michael geht davon aus, dass
Michael assumes that he — Michael geht davon aus, dass er
Michael assumes that he will stay in the house — Michael geht davon aus, dass er im haus bleibt
assumes that he will stay in the house — geht davon aus, dass er im haus bleibt
that he will stay in the house — dass er im haus bleibt ; dass er im haus bleibt,
he will stay in the house — er im haus bleibt; will stay in the house — im haus bleibt
Scoring Phrase Translations

• Phrase pair extraction: collect all phrase pairs from the data

• Phrase pair scoring: assign probabilities to phrase translations

• Score by relative frequency:

\[\phi(f|e) = \frac{\text{count}(e, f)}{\sum_{f_i} \text{count}(e, f_i)} \]
Size of the Phrase Table

- Phrase translation table typically bigger than corpus
 ... even with limits on phrase lengths (e.g., max 7 words)

→ Too big to store in memory?

- Solution for training
 - extract to disk, sort, construct for one source phrase at a time

- Solutions for decoding
 - on-disk data structures with index for quick look-ups
 - suffix arrays to create phrase pairs on demand
Weighted Model

• Described standard model consists of three sub-models
 – phrase translation model $\phi(\bar{f}|\bar{e})$
 – reordering model d
 – language model $p_{LM}(e)$

$$e_{\text{best}} = \arg\max_e \prod_{i=1}^{I} \phi(f_i|e_i) d(\text{start}_i - \text{end}_{i-1} - 1) \prod_{i=1}^{|e|} p_{LM}(e_i|e_1...e_{i-1})$$

• Some sub-models may be more important than others

• Add weights λ_ϕ, λ_d, λ_{LM}

$$e_{\text{best}} = \arg\max_e \prod_{i=1}^{I} \phi(f_i|e_i)^{\lambda_\phi} d(\text{start}_i - \text{end}_{i-1} - 1)^{\lambda_d} \prod_{i=1}^{|e|} p_{LM}(e_i|e_1...e_{i-1})^{\lambda_{LM}}$$
Log-Linear Model

• Such a weighted model is a log-linear model:

\[p(x) = \exp \sum_{i=1}^{n} \lambda_i h_i(x) \]

• Our feature functions

 – number of feature function \(n = 3 \)
 – random variable \(x = (e, f, \text{start}, \text{end}) \)
 – feature function \(h_1 = \log \phi \)
 – feature function \(h_2 = \log d \)
 – feature function \(h_3 = \log p_{\text{LM}} \)
Weighted Model as Log-Linear Model

\[p(e, a|f) = \exp(\lambda_\phi \sum_{i=1}^{I} \log \phi(\bar{f}_i|\bar{e}_i) + \lambda_d \sum_{i=1}^{I} \log d(a_i - b_{i-1} - 1) + \lambda_{LM} \sum_{i=1}^{|e|} \log p_{LM}(e_i|e_1...e_{i-1})) \]
More Feature Functions

• Bidirectional alignment probabilities: $\phi(\bar{e}|\bar{f})$ and $\phi(\bar{f}|\bar{e})$

• Rare phrase pairs have unreliable phrase translation probability estimates → lexical weighting with word translation probabilities

$$\text{lex}(\bar{e}|\bar{f}, a) = \prod_{i=1}^{\text{length}(\bar{e})} \frac{1}{|\{j|(i, j) \in a\}|} \sum_{\forall (i, j) \in a} w(e_i|f_j)$$
More Feature Functions

- Language model has a bias towards short translations
 \[\rightarrow\] word count feature (word penalty)

- We may prefer finer or coarser segmentation
 \[\rightarrow\] phrase count

- Multiple language models

- Multiple translation models

- Other knowledge sources
Lexicalized Reordering

• Distance-based reordering model is weak
 → learn reordering preference for each phrase pair

• Three orientations types: (m) monotone, (s) swap, (d) discontinuous

$$\text{orientation} \in \{m, s, d\}$$

$$p_o(\text{orientation}|\bar{f}, \bar{e})$$
Learning Lexicalized Reordering

- Collect orientation information during phrase pair extraction
 - if word alignment point to the top left exists → monotone
 - if a word alignment point to the top right exists → swap
 - if neither a word alignment point to top left nor to the top right exists
 → neither monotone nor swap → discontinuous
Learning Lexicalized Reordering

- Estimation by relative frequency

\[
p_o(\text{orientation}) = \frac{\sum_{\bar{f}} \sum_{\bar{e}} \text{count}(\text{orientation}, \bar{e}, \bar{f})}{\sum_{o} \sum_{\bar{f}} \sum_{\bar{e}} \text{count}(o, \bar{e}, \bar{f})}
\]

- Smoothing with unlexicalized orientation model \(p(\text{orientation}) \) to avoid zero probabilities for unseen orientations

\[
p_o(\text{orientation} | \bar{f}, \bar{e}) = \frac{\sigma p(\text{orientation}) + \text{count}(\text{orientation}, \bar{e}, \bar{f})}{\sigma + \sum_{o} \text{count}(o, \bar{e}, \bar{f})}
\]
EM Training of the Phrase Model

• We presented a heuristic set-up to build phrase translation table (word alignment, phrase extraction, phrase scoring)

• Alternative: align phrase pairs directly with EM algorithm
 – initialization: uniform model, all $\phi(\bar{e}, \bar{f})$ are the same
 – expectation step:
 * estimate likelihood of all possible phrase alignments for all sentence pairs
 – maximization step:
 * collect counts for phrase pairs (\bar{e}, \bar{f}), weighted by alignment probability
 * update phrase translation probabilities $p(\bar{e}, \bar{f})$

• However: method easily overfits (learns very large phrase pairs, spanning entire sentences)
Summary

- Phrase Model

- Training the model
 - word alignment
 - phrase pair extraction
 - phrase pair scoring

- Log linear model
 - sub-models as feature functions
 - lexical weighting
 - word and phrase count features

- Lexicalized reordering model

- EM training of the phrase model