Morphological Aspects of Computer-Driven Elicitation of Knowledge about Any Language

Sergei Nirenburg and Marjorie McShane
University of Maryland Baltimore County
How to create NLP resources for a new language?

By hand

By parameterizing:

- Translation-based methods (e.g., Probst, Levin et al.)
 - Easy for informants
 - Coverage a problem
- ML (quick ramp-up competitions; parallel corpora; learning morphology)
 - Quality a problem
 - Rules are not human interpretable
- Interactive knowledge elicitation system
 - Lots of choices which determine ultimate form, coverage, etc., of knowledge
 - This talk focuses on some of the choices and their implications in the realm of morphology
Boas Knowledge elicitation system

Supports computational field linguistics
Extracts knowledge about any language from a non-expert informant
No knowledge engineer involved
English is assumed as the language of HCI
Mixed-initiative knowledge elicitation strategy
System is supplied with cross-linguistically motivated inventory of parameters and values
The “signature” of a language is how it realizes linguistic parameters
Examples of parameters and values

- **Case**: nominative, accusative, dative...
- **Number**: singular, plural, dual, paucal...
- **Tense**: past, present, future...
- **Aspect**: progressive, simple...
- **Grammatical role**: subject, direct object...
- **Agreement**: subject-verb, noun-adjective...
- **Open-class lexical meanings**: word, phrase, morpheme...
- **Closed-class lexical meanings**: word, phrase, morpheme, feature...

...
Some examples of phenomena we must treat

From:

Étudie-t-elle maintenant? – Non, elle m’attend à l’université.

‘Is she studying now?’ ‘No, she’s waiting for me at the university.’
Nach Angaben der britischen Regierung schlug Blair in einem Brief an die Regierungschaften der NATO-Staaten und an den russischen Präsidenten Wladimir Putin zu der Bildung eines neuen Russland-Nordatlantikrats vor.

‘According to statements by the British administration, Blair, in a letter to the heads of governments of the NATO states and to Russian president Vladimir Putin, suggested the formation of a new Russia-North-Atlantic Council.’
I would have hit him with a stick.
a. Ja budu govoryty tyxše, niž ty.
I_{NOM.SG} will speak$_{INFIN}$ quieter than you$_{NOM.SG}$

b. Ja govorytymu tyxše, niž ty.
I_{NOM.SG} speak$_{1.SG.FUT}$ quieter than you$_{NOM.SG}$

‘I will speak more softly than you.’
a. My_ śmy znowu wczoraj poszli
d. My znowu wczoraj poszli_ śmy
we 1.NOM.PL 1.PL again yesterday went₃.PL to park_{GEN.SG}
we 1.NOM.PL again 1.PL yesterday went₃.PL to park_{GEN.SG}
we 1.NOM.PL again yesterday went₃.PL. 1.PL to park_{GEN.SG}

‘We went to the park again yesterday.’
I made Hasan carry the suitcase.
‘A severe cold killed Ali.’
Hebrew
keshe_ pagash_ ti_ h_ a
when met I you MASC.
‘when I met you’
a. Irish
sráid ~ an tsráid
street ~ the street

b. Bulgarian
more_ to
sea_{NEUT.SG} the_{NEUT.SG} ‘the sea’

c. Czech
ne_ znáte
not know_{2.PL.PRES} ‘(you) don’t know’

d. Tagalog
bulaklak ~ magbu_bulaklak
flower ~ flower vendor
A text element may contain **one stem** (Fr. *elle*; Tur. *Hasana*) or **multiple stems** (Fr. *m’attend*; G. *Russland-Nordatlantikrats*).\(^{11}\)

Stems may represent:

- **open-class elements**—nouns (G. *Angaben*; Ir. *sráid*), verbs (Tur. *tasıttim*; Per. *kosht*), adjectives (G. *neuen*; U. *tyxše*), adverbs (Fr. *maintenant*);
- **closed-class elements**—pronouns (Fr. *elle*; Pol. *my*), conjunctions (G. *und*; U. *niž*), prepositions (Fr. *à*; Ger. *der, in, an, vor*; Pol. *do*), articles (Fr. *l’*; Ger. *den, die*), etc.;
- **inflectional elements**—auxiliaries (U. *budu*, R. *by*), postpositions (Per. *ra*).
- **onomasticon elements**—proper nouns (Ger. *Wladimir Putin*), proper adjectives (Ger. *britischen*).

Open-class stems may be inflected using **synthetic** flective inflection (Fr. *Étudie*; R. *udarila*; G. *Angaben*), **analytical** inflection (U. *budu govoryty*) or **agglutinating** inflection (H. *keshepagashtiha*).

Closed-class stems may also be inflected, often in **suppletive** paradigms (R. *ego*).

Inflection may represent **syntactic** information (Pol. *My* is in the nominative case, indicating that it is a subject) or **lexical** information (R. *palkoj* is instrumental singular, with the instrumental case reflecting the closed-class meaning ‘with’).
If an element contains multiple stems, the stems may be separated by a hyphen (Fr. Étudie-t-elle; G. Nato-Staaten), an apostrophe (Fr. m’attend, l’université), or nothing at all (G. Nordatlantikrats, Regierungschefs).

Multi-stem text elements may contain: two or more open-class stems (G. Nato-Staaten) or a combination of open-class and closed-class stems (Fr. Étudie-t-elle; H. keshepagashtiha).

Derivational word-formation processes that can affect a stem include compounding (G. Nato-Staaten), affixal derivation (Cz. neznáte; G. britischen, russischen), reduplication, or some combination of the above (Tag. magbubulaklak).

Syntax-level word-formation processes, which are sometimes induced by phonetic reasons, include insertion of phonetic elements (Fr. t in Étudie-t-elle), affixal realizations of closed-class items (Fr. m’attend; H. keshepagashtiha), words formed by inflectional affix hopping (Pol. myśmy, znowuśmy, wczorajśmy), and syntactically determined spelling variants (Ir. an tsráid).
How to get an inventory of parameters and values?

Boas uses a series of KE screens like this one:

<table>
<thead>
<tr>
<th>Stop Task</th>
<th>Logoff</th>
<th>Help Resources</th>
</tr>
</thead>
</table>

Nouns: Inflection for Case

Do Russian nouns inflect for case?

- Yes
- No

What is case?

Examples of case in different languages.

What we mean by 'inflect for case'.
Choices related to morphology

Informant: novice or expert?
For inflectional morphology: paradigms or not?
How to define a paradigm for purposes of ML?
How might an informant help to learn inflectional morphology?
What should a paradigm look like?
How can the system help to create good paradigms?
Are analytical forms part of the paradigm?
Does it matter how many paradigms there are?
How to elicit irregular forms of open-class items?
How to elicit agglutinating morphology?
The informant: a linguistic novice or An expert?

If the informant is an expert the system must:

- Initiate the expert into a KE process that is more constrained than that typically used in field linguistics; e.g., must use the expressive means provided in the system and not, say, free prose
- Impose a division of linguistic reality into modules supported by processing engines for which the knowledge is being acquired
- Emphasize that typical cases are most important; not focus all energies on exceptions (no “teratology”)
- Coax the expert into carrying out more manual work than he/she might want to do
If the informant is a novice the system must:

- Provide extensive pedagogical materials (if we assume no human linguistic guide accompanying the system)
- Assist the informant in creating generalizations and abstractions
- Provide redo and refinement capabilities, to the extent possible, with as little work lost as possible (this can get very complex fast: e.g. a person has created inflectional paradigms and realizes he has forgotten a parameter)
- Help the informant to find a balance between listing (conceptually easier but more time-consuming) and creating abstractions and
The existence of morphological analyzers for flective languages is practically taken as a given in current NLP systems but it is not, in principle, a necessity.

Listing all inflectional forms in the lexicon might be a better (or additional) option if:

- Labor is cheap
- A language has a lot of irregular forms (e.g., Irish)
- The knowledge engineers have difficulty making linguistic abstractions

Another option would be to elicit inventories of affixes and morphotactic rules; however, it would be difficult to develop expressive means that would permit an informant to convey, in a way the program could unambiguously understand, the range of possible inflectional processes that lie outside of strict affixation: stem internal
Pros and cons of inflectional paradigms

Pros:
- Can learn morphological rules in well-understood ways
- Limits listing of forms, saves time
- Covers new inputs (e.g., newly coined words)

Cons of paradigms
- How to define a paradigm? How many paradigms?
- Russian grammars typically state that there are four major nominal declensions but Wade (1992) posits over thirty subclasses and Zalizniak (1967), over 70
- Polish grammars tend to avoid the paradigm issue completely for nouns, giving stem-specific endings for each combination of case, number, gender and virility (Bielec 1998; Kaleta 1998)
How to define paradigm for ML?

Will inherent features, like gender or animacy, be available to the learner/analyzer/generator, e.g., through a lexicon?

Will the ML algorithm permit paradigm bunching based on the stem form?

- E.g., for the invented example below, would the learner learn that stems in –dyt have a different NomPl ending than stems in –myt?

\[
\begin{align*}
\text{padyt}_{\text{Nom.Sg.}} & \quad \text{padytis}_{\text{Nom.Pl.}} \\
\text{romyt}_{\text{Nom.Sg.}} & \quad \text{romytos}_{\text{Nom.Pl.}}
\end{align*}
\]
Our most sophisticated ML engine

Developed by Kemal Oflazer (Oflazer, Nirenburg, McShane 2001)

Sample inflectional paradigms were compiled into a finite state transducer lexicon and combined with a sequence of morphographemic rewrite rules induced using transformation-based learning.

The engine generated as well as analyzed

Permitted learning loop elicitation methodology:

- Informant provides full inflectional forms for one example of each paradigm
- System learns rules
- Informant provides more citation forms as examples
- System generates what it believes to be correct forms
- Informant corrects mistakes; system relearns

There is no incorrect way to provide forms or delineate paradigms using this methodology (though some approaches are more efficient than others)
Polish was used as a test case for development of the ML system.

To the left is the primary example of a “bunched” paradigm that ultimately covered 18 word-final consonants and consonant clusters.

Additional provided inflectional forms permitted the learning of many stem-specific variations, including such things as:

- b, p, f, w, m, n, s, z, t, d, s, t, zm take Loc/Voc Sing ending –ie
- g, k, ch take Loc/Voc Sing ending –u
- Before the Loc/Voc Sing affix, many consonant alternations take place, including $st \rightarrow s\acute{c}, zm \rightarrow \acute{z}m, l \rightarrow l, r \rightarrow rz, sl \rightarrow s\acute{l}$, and others
- Etc!
What if the ML algorithm must be simpler?

The approach just described relied on a toolset that ceased to be available at some point. It also involved a learning-loop methodology that involved generation of forms as well as analysis. As an alternative, one can create a simpler ML system that shifts some more work to the informant; e.g.,

- Perhaps all words in every paradigm must inflect exactly the same way
- Perhaps the informant will be asked to explicitly specify the stem for each paradigm
- Perhaps the informant will be required to indicate stem-affix boundaries (segmentation)
Elicit Morphological Parameters in L → Elicit Value Sets for Parameters → Elicit Inflectional Paradigm Templates for L → Separate Example Words into Groups by Paradigm

Learning Loop: Revise and Relearn

Test Morphological Analysis Rules Using Informant → Learn Morphological Analysis Rules For Each Paradigm → Elicit Inflectional Forms for Each Paradigm

Output: A Set of Inflectional Morphology Analysis Rules for L
How might an informant help to generate good inflectional rules?

Rules could be shown to the informant, if they are or could be made transparent: e.g., a bad rule for dog > dogs would be “lop off the g and add gs”

The bootstrapping learning loop methodology could be used, as described earlier (generate forms for the user to check)

The informant could be asked for additional information to guide learning: an inventory of affixes, the stem for each paradigm, known stem alternations, whether or not the language has fleeting vowels, whether the language uses infixation, etc.
In one version of the Boas system, a simplified ML engine was used and informants were asked to indicate the stem.

Selecting the STEM for the самолет Paradigm

In the text field below, please indicate the stem of the word самолет - i.e. the core form from which inflectional forms are built (this is not necessarily the same as the citation form!). The idea is to help the system to create linguistically valid rules of inflection that can later be generalized to other words of this type.

<table>
<thead>
<tr>
<th>Stem:</th>
<th>самолет</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citation Form</td>
<td>самолет</td>
</tr>
<tr>
<td>Singular Nominative</td>
<td>самолет</td>
</tr>
<tr>
<td>Singular Accusative</td>
<td>самолет</td>
</tr>
<tr>
<td>Singular Genitive</td>
<td>самолета</td>
</tr>
<tr>
<td>Singular Dative</td>
<td>самолету</td>
</tr>
<tr>
<td>Singular Instrumental</td>
<td>самолетом</td>
</tr>
<tr>
<td>Singular Locative</td>
<td>самолете</td>
</tr>
<tr>
<td>Plural Nominative</td>
<td>самолеты</td>
</tr>
<tr>
<td>Plural Accusative</td>
<td>самолеты</td>
</tr>
<tr>
<td>Plural Genitive</td>
<td>самолетов</td>
</tr>
<tr>
<td>Plural Dative</td>
<td>самолетам</td>
</tr>
<tr>
<td>Plural Instrumental</td>
<td>самолетами</td>
</tr>
<tr>
<td>Plural Locative</td>
<td>самолетах</td>
</tr>
</tbody>
</table>
What should a paradigm look like?

The more forms a paradigm has, the more important it is to organize them in a way that is convenient for a given informant; the traditional large tables of reference grammars are not necessarily the most user-friendly.

The two following screen shots show a novel layout for a French paradigm.

Emphasis on visualization, organization, putting like forms together for ergonomic reasons and, possibly, to support more efficient ML.

Recent advances in GUI technologies could revolutionize how we think about grammar description.
All single-word forms together (see next page for compound forms)
- Upper left: mostly merge present indicative and subjunctive; visually underscore difference (addition of “I” using spacing or another means)
- Shaded cells in left and right bottom have same endings.
- All compound forms have same participial forms of main verb, represented as a hub.
- Shaded boxes show that same forms can represent two meanings.
- All “ser-” forms in one row; all “fus-” forms in another row.
The paradigm layouts in boas

Two main options (these days GUI support would allow much more)

- Simple table with parameters in any order
- Hierarchical layout, with parameters in any order and any number of levels of hierarchy
Once the template is created, How can the system help to create good paradigms?

Boas had “fast lane” and “scenic route” for creating paradigms

Fast lane: informant decides how many/which paradigms to create

Scenic route:

- Informant translates a pre-compiled word list and indicates any grammatically relevant inherent features
- The system posits paradigms based on inherent features and word forms (ends with consonant, ends with vowel, etc.)
- Informant decides whether the words in the posited groups inflect similarly; splits or bunches groups accordingly
Scenic route, step 1:
Translation and inherent features
Scenic route, Steps 2&3: paradigm guessing, modifying
Are analytical inflectional forms part of the paradigm?

It is conceptually simplest to include these in the paradigm, especially since in some languages synthetic and analytical forms are alternatives: Ukrainian budu pysaty vs. pysatymu

But this complicates the ML algorithm.
Once the paradigm template is established, the informant divides table cells up into those that have single-word, multi-word, or both single- and multi-word realizations.

The single-word entities are extracted and dealt with in paradigms in the way described above.

Multi-word entities are sent to a different elicitation module where the informant provides an inventory of auxiliaries and their inflectional forms, if applicable, then links them to the correct forms of the main verb.
Does it matter how many paradigms there are?

It does if the informant is expected to manipulate them later on: e.g., if he is expected to assign every open-class word to a paradigm explicitly.

If explicit assignment is necessary, then it should at least be made semi-automatic.
How to elicit Irregular forms of open class items?

<table>
<thead>
<tr>
<th>border: a decorative recessed or relieved surface.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russian:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>border: a line that indicates a boundary.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russian:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>border: a strip forming the outer edge of something.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russian:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>box: a rectangular drawing; 'the flowchart contained many boxes'.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russian:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>box: any one of several designated areas on a ball field where the batter or catcher or coaches are positioned; 'the umpire warned the batter to stay in the batter's box'.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russian:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>box: evergreen shrubs or small trees.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russian:</td>
</tr>
</tbody>
</table>

Clicking on “paradigm” takes user to a template to fill out.
How to elicit Agglutinating Inflectional morphology?
Combined agglutinating affix elicitation

Grammatical Number and Person Combined (non-paradigmatically)

Even languages that are highly agglutinating or isolating (i.e., use a separate affix or word for each bit of meaning) tend to combine grammatical Person and Number in a single affix/word, particularly on verbs. For example, there might be one affix/word for First Person Singular, another for First Person Plural, etc. If Russian combines Person and Number in its inflectional affixes/words, list the relevant affixes/words in the table below, one to a line. (You will have the chance to list separate affixes/words for each of these parameters in later pages.)

For affixes, type a period at the place of attachment:

.suffix
.prefix.
circumfix-beginning.circumfix-end
.infix.

Click here for a description and example of each value of Number. Click here for a description and example of each value of Person.
Where else can inflectional meanings occur?

morphology/syntax interface

Grammatical Functions: Direct Objects

The **direct object** denotes the person or thing that is directly affected by the verbal action (precisely defining direct object can be rather sticky in some languages). It is likely that at least some of the blue noun phrases below are direct objects in Russian, as they are in English. Consider how you would express them in Russian. (Variants are listed using a slash; they are provided only in case different words behave differently for some reason in Russian.)

- She likes French novels / onion soup / sunny days / her mother-in-law / him.
- She doesn’t like French novels / onion soup / sunny days / her mother-in-law / him
- She gave a kitten / a doll house / a bicycle / it to her daughter as a birthday gift.
- He delivered a letter / it to my cousin.
- She would eat steak / ice cream / it every day if she could.
- She wouldn’t eat steak / ice cream / it if you paid her to.

For those blue noun phrases that are direct objects, how does Russian show that they are direct objects? Please select as many of the following options as are applicable. (Select "word order" only if the direct object must occupy a given position with respect to the verb, like direct objects do in English.)

- By case-marking.
- By the use of a particle, preposition or postposition.
- By word order.
More morphological realizations: Closed class lexicon

Means of Realizing Closed-Class Items

Closed-class items may be realized in any of four ways: as a word, a phrase, an affix, or a feature. It is possible that more than one type of realization can be used to translate a given closed-class meaning in your language. Below are examples of each type of realization.

- **Word Realization**
 The English preposition 'for' is translated by the French word 'pour'.

- **Phrasal Realization**
 The English preposition 'below' is translated by the French phrase 'au-dessous de'.

- **Affixal Realization**
 The English preposition 'the' is translated by the Bulgarian suffixes '-to', '-ta', etc.: more ~ more(to "sea ~ the sea", staja ~ stajata "room ~ the room".

- **Feature Realization**
 The English preposition 'with' - as in '(hit someone) with a stick' - is translated into Russian by putting the noun in question ('stick') in the instrumental case.
Closed class Lexicon acquisition interface
And still more meanings realized via affixes
What can be exploited in building NLP resources?

Cross-linguistic generalizations: parameters and values, lists of various types, etc.

Technology

- Complex control structures (e.g., permitting redo of partial results: “I forgot one parameter in the 40 paradigms I have already developed!”)
- Importing available resources for L (e.g., lexicon)
- Modifying available resources for some language like L (e.g., build Catalan system from Spanish one)