Factored Models for Morphology

Philipp Koehn, University of Edinburgh

26 January 2011
Translating between all EU-27 languages

Target Language	en	bg	de	cs	da	el	es	et	fi	fr	hu	it	lv	mt	nl	pl	pt	ro	sk	sl	sv	
en	–	40.5	46.8	52.6	50.0	41.0	55.2	34.8	38.6	50.1	37.2	50.4	39.6	43.4	39.8	52.3	49.2	55.0	49.0	44.7	50.7	52.0
bg	61.3	–	38.7	39.4	39.6	34.5	46.9	25.5	26.7	42.4	22.0	43.5	29.3	29.1	25.9	44.9	35.1	45.9	36.8	34.1	34.1	39.9
de	53.6	26.3	–	35.4	43.1	32.8	47.1	26.7	29.5	39.4	27.6	42.7	27.6	30.3	19.8	50.2	30.2	44.1	30.7	29.4	31.4	41.2
cs	58.4	32.0	42.6	–	43.6	34.6	48.9	30.7	30.5	41.6	27.4	44.3	34.5	35.8	26.3	46.5	39.2	45.7	36.5	43.6	41.3	42.9
da	57.6	28.7	44.1	35.7	–	34.3	47.5	27.8	31.6	41.3	24.2	43.8	29.7	32.9	21.1	48.5	34.3	45.4	33.9	33.0	36.2	47.2
el	59.5	32.4	43.1	37.7	44.5	–	54.0	26.5	29.0	48.3	23.7	49.6	29.0	32.6	23.8	48.9	34.2	52.5	37.2	33.1	36.3	43.3
es	60.0	31.1	42.7	37.5	44.4	39.4	–	25.4	28.5	51.3	24.0	51.7	26.8	30.5	24.6	48.8	33.9	57.3	38.1	31.7	33.9	43.7
et	52.0	24.6	37.3	35.2	37.8	28.2	40.4	–	37.7	33.4	30.9	37.0	35.0	36.9	20.5	41.3	32.0	37.8	28.0	30.6	32.9	37.3
fi	49.3	23.2	36.0	32.0	37.9	27.2	39.7	34.9	–	29.5	27.2	36.6	30.5	32.5	19.4	40.6	28.8	37.5	26.5	27.3	28.2	37.6
fr	64.0	34.5	45.1	39.5	47.4	42.8	60.9	26.7	30.0	–	25.5	56.1	28.3	31.9	25.3	51.6	35.7	61.0	43.8	33.1	35.6	45.8
hu	48.0	24.7	34.3	30.0	33.0	25.5	34.1	29.6	29.4	30.7	–	33.5	29.6	31.9	18.1	36.1	29.8	34.2	25.7	25.6	28.2	30.5
it	61.0	32.1	44.3	38.9	45.8	40.6	62.9	25.0	29.7	52.7	24.2	–	29.4	32.6	24.6	50.5	35.2	56.5	39.3	32.5	34.7	44.3
lt	51.8	27.6	33.9	37.0	36.8	26.5	21.1	34.2	32.0	34.4	28.5	36.8	–	40.1	22.2	38.1	31.6	31.6	29.3	31.8	35.3	35.3
lv	54.0	29.1	35.0	37.8	38.5	29.7	8.0	34.2	32.4	35.6	29.3	38.9	38.4	–	23.3	41.5	34.4	39.6	31.0	33.3	37.1	38.0
mt	72.1	32.2	37.2	37.9	38.9	33.7	48.7	26.9	25.8	42.4	22.4	43.7	30.2	33.2	–	44.0	37.1	45.9	38.9	35.8	40.0	41.6
nl	56.9	29.3	46.9	37.0	45.4	35.3	49.7	27.5	29.8	43.4	25.3	44.5	28.6	31.7	22.0	–	32.0	47.7	33.0	30.1	34.6	43.6
pl	60.8	31.5	40.2	44.2	42.1	34.2	46.2	29.2	29.0	40.0	24.5	43.2	33.2	35.6	27.9	44.8	–	44.1	38.2	38.2	39.8	42.1
pt	60.7	31.4	42.9	38.4	42.8	40.2	46.6	40.7	29.1	52.1	40.8	28.0	35.1	24.8	49.3	34.5	–	39.4	32.1	34.4	43.9	
ro	60.8	33.1	38.5	37.8	40.3	35.6	50.4	24.6	26.2	46.5	20.0	44.8	28.4	29.9	28.7	43.0	35.8	48.5	–	31.5	35.1	39.4
sl	60.8	32.6	39.4	48.1	41.0	33.3	46.2	29.8	28.4	39.4	27.4	41.8	33.8	36.7	28.5	44.4	39.0	43.3	35.3	–	42.6	41.8
sv	58.5	26.9	41.0	35.6	46.6	33.3	46.6	27.4	30.9	38.9	22.7	42.0	28.2	31.0	23.7	45.6	32.2	44.2	32.7	31.3	33.5	–

(using the Acquis corpus) [from Koehn et al., 2009]
What Makes Machine Translation Hard?

- Finding explanatory factors for diverging performance of Europarl systems

<table>
<thead>
<tr>
<th>Explanatory Factor</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target vocabulary size</td>
<td>0.388</td>
</tr>
<tr>
<td>Reordering amount</td>
<td>0.384</td>
</tr>
<tr>
<td>Language similarity</td>
<td>0.366</td>
</tr>
<tr>
<td>Source vocabulary size</td>
<td>0.045</td>
</tr>
</tbody>
</table>

[from Birch et al., 2008]

- These factors together explain 75% of the differences in performance

- Similar results in study of Acquis systems [Koehn et al., 2009]
Why Morphology?

Content words:

- bite
- man
- dog

How can we encode their relation?
Word Order (English)

Content words:

bite
man
dog

Defined word order: subject, verb, object

dog bite man
Function Words (Japanese)

Content words:

bite
man
dog

Place marker word after (or before) content word to indicate its role

bite dog subject man object

(a lot like prepositional phrases in English)
Affixes (German, Hebrew, ...)

Content words:

- bite
- man
- dog

Add affix to content word to indicate its role

- bite dog-subject man-object

(prepositions may become affixes)
Advantage of Affixes: Freer Word Order

• The following German sentences mean the same:

 Der Mann gibt der Frau das Buch.
 Das Buch gibt der Mann der Frau.
 Der Frau gibt der Mann das Buch.
 Der Mann gibt das Buch der Frau.
 Das Buch gibt der Frau der Mann.
 Der Frau gibt das Buch der Mann.

• Placing of content words allows for nuanced emphasis
Additional Information

• Count (singular/dual/plural)

• Gender
 – in English, you more likely refer to your brother or sister than your sibling, but a cousin is gender-neutral
 – in other languages, words like scientist are always gender-specific

• Definiteness
 – indicating reference to a prior mentioned or well-established object
 – in English only in singular determiners the vs. a

⇒ subtly adding additional information
Agreement

- More than one word may contain additional information

```
bite-fem dog-sbj-fem tall-obj-sgl-male man-obj-sgl-male
```
related words have to agree
(subject-verb, within noun phrase)

- Even more free word order possible

```
tall-obj-sgl-male bite-fem dog-sbj-fem man-obj-sgl-male
```
Derivational Morphology

• Changing part of speech
 – organize → organization, organizer
 – systematic and highly productive

• Generic change of meaning
 – German -chen makes objects small
 – English verb prefixes re- (doing it again) co- (doing it together)

• Compounds (homework, website)
Productivity of Derivational Morphology

- **word** (614,000,000 hits on Google)
- **wordify** (8,840 hits on Google)
- **wordification** (2,350 hits on Google)
- **wordificator** (8 hits on Google)
- **wordifier** (2,820 hits on Google)
- **wordificationism** (1 hit on Google)

I think you’re confusing the term ”Democracy” with ”Capitalism”; I think you mean ”Has Capitalism failed”? No. It hasn’t.

I agree, Hambone; I’m just trying to correct the **wordificationism**.

Where in the world did you get the word ”**wordificationism**”? Not in the Merriam-Webster dictionary, not in the Thesaurus...

- **wordificationalist** (0 hit on Google, Fall 2010)
Problems for Machine Translation

- Increased vocabulary size \rightarrow sparse data
- Often added ambiguity (many interpretations per surface form)
- Lack of information in source
- Enforcing long distance agreement
- Transfer between different annotation schemes (free to fixed word order)
<table>
<thead>
<tr>
<th>Case</th>
<th>Singular</th>
<th>Plural</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>male</td>
<td>fem.</td>
</tr>
<tr>
<td>nominative (subject)</td>
<td>der</td>
<td>die</td>
</tr>
<tr>
<td>genitive (possessive)</td>
<td>des</td>
<td>der</td>
</tr>
<tr>
<td>dative (indirect object)</td>
<td>dem</td>
<td>der</td>
</tr>
<tr>
<td>accusative (direct object)</td>
<td>den</td>
<td>die</td>
</tr>
</tbody>
</table>

Not only many different forms, but each form is highly ambiguous.
Major Approaches

- Splitting approach
- Factored approach
- Enriching approach
Splitting

- Source side
 e.g., Arabic–English: split off \textit{w- (and)} and \textit{al- (the)} prefixes

- Target side
 e.g., English–Turkish: see work by Kemal Oflazer’s group

- May also drop irrelevant morphemes

- Compound splitting
Compound Splitting

- Compounding common in German, Finnish, Greek, ...
 - increased vocabulary size
 - leads to sparse data problems and unknown words

- Frequency based method for compound splitting [Koehn and Knight, 2003]
 - break up, if parts are more frequent than whole
 - geometric mean: $S_{\text{best}} = \arg\max_S \left(\prod_{p_i \in S} \text{count}(p_i) \right)^{\frac{1}{n}}$
Preserving Ambiguity

- Many possible splits

\Rightarrow Encode them in an input lattice [Dyer, 2009]

- Decoder chooses optimal source path
Compound Merging

- Work by ... (cite)

- Split compounds on target side of training data

- Indicate splits
 - split token aktion @~@ plan
 - annotate one part aktion~ plan

- Merging as deterministic post-processing step
Factored Translation Models

- Factored representation of words [Koehn and Hoang, 2007]

\[
\begin{array}{ccc}
\text{Input} & \text{Output} \\
\text{word} & \bigcirc & \bigcirc \\
\text{lemma} & \bigcirc & \bigcirc \\
\text{part-of-speech} & \bigcirc & \bigcirc \\
\text{morphology} & \bigcirc & \bigcirc \\
\text{word class} & \bigcirc & \bigcirc \\
\ldots & \ldots & \ldots \\
\end{array}
\]

- Goals
 - Generalization, e.g. by translating lemmas, not surface forms
 - Richer model, e.g. using morphosyntax for reordering, language modeling
Decomposing Translation: Example

- Translate lemma and syntactic information separately

\[
\begin{array}{c}
\square & \text{lemma} & \square \Rightarrow \square & \text{lemma} & \square \\
\square & \text{part-of-speech} & \square \Rightarrow \square & \text{part-of-speech} & \square \\
\dotfill & \dotfill & \dotfill & \dotfill & \dotfill \\
\end{array}
\]
Decomposing Translation: Example

- Generate surface form on target side

```
surface
↑
lemma
part-of-speech
morphology
```
Translation Process: Example

Input: (Autos, Auto, NNS)

1. Translation step: lemma \Rightarrow lemma
 $(?, \text{car}, ?), (?, \text{auto}, ?)$

2. Generation step: lemma \Rightarrow part-of-speech
 $(?, \text{car, NN}), (?, \text{car, NNS}), (?, \text{auto, NN}), (?, \text{auto, NNS})$

3. Translation step: part-of-speech \Rightarrow part-of-speech
 $(?, \text{car, NN}), (?, \text{car, NNS}), (?, \text{auto, NNP}), (?, \text{auto, NNS})$

4. Generation step: lemma,part-of-speech \Rightarrow surface
 (car, car, NN), (cars, car, NNS), (auto, auto, NN), (autos, auto, NNS)
Efficient Factored Model Decoding

- Problem: Explosion of number of translation options
 - originally limited to 20 per input phrase
 - even with simple model, now 1000s of mapping expansions possible

- Solution: Additional pruning of translation options
 - keep only the best expanded translation options
 - current default 50 per input phrase
 - decoding only about 2-3 times slower than with surface model
Morphological generation model

Input

- word
- lemma
- part-of-speech

Output

- word
- lemma
- part-of-speech
- morphology
Initial Results

- Results on 1 million word News Commentary corpus (German–English)

<table>
<thead>
<tr>
<th>System</th>
<th>In-domain</th>
<th>Out-of-domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>18.19</td>
<td>15.01</td>
</tr>
<tr>
<td>With POS LM</td>
<td>19.05</td>
<td>15.03</td>
</tr>
<tr>
<td>Morphgen model</td>
<td>14.38</td>
<td>11.65</td>
</tr>
</tbody>
</table>

- What went wrong?
 - why back-off to lemma, when we know how to translate surface forms?
 - → loss of information
Solution: Alternative Decoding Paths

- Allow both surface form translation and morphgen model
 - prefer surface model for known words
 - morphgen model acts as back-off
Results

- Model now beats the baseline

<table>
<thead>
<tr>
<th>System</th>
<th>In-domain</th>
<th>Out-of-domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>18.19</td>
<td>15.01</td>
</tr>
<tr>
<td>With POS LM</td>
<td>19.05</td>
<td>15.03</td>
</tr>
<tr>
<td>Morphgen model</td>
<td>14.38</td>
<td>11.65</td>
</tr>
<tr>
<td>Both model paths</td>
<td>19.47</td>
<td>15.23</td>
</tr>
</tbody>
</table>
Open Issues

• Factored decoding for complex models such as the morph-gen model is broken

• Bad exploration of search space
 (see next slide)

• No proper back-off
 – decomposed model should only be used for unknown and short phrases
 – translation rare phrase could be interpolated (offline)

• Should be addressed — any volunteers?
Bad Exploration of Search Space

- Search for translation options is exhaustive with panic pruning

- Example for unusual part-of-speech patterns:

```
Staatsanwalt → attorney general, prosecutor, ...
  ↓  ↓  ↓
  NN  ADJ NN
```

- preferred translation: `attorney/NN general/ADJ`
- unusual part-of-speech mapping: `NN → NN ADJ` may be pruned

- Also: for long phrases and words with many associated part-of-speech tags, computing all possibilities computationally too expensive
Enriching Output

- Generation of POS tags on the target side
- Use of high order language models over POS (7-gram, 9-gram)
- Motivation: syntactic tags should enforce syntactic sentence structure model not strong enough to support major restructuring
Decomposed vs. Joint

Better: generating both factors in same translation step
Morphological Tags

- Violation of noun phrase agreement in gender
 - das schwarze and schwarze Himmel are perfectly fine bigrams
 - but: das schwarze Himmel is not

- If relevant n-grams does not occur in the corpus, a lexical n-gram model would fail to detect this mistake

- Morphological sequence model: $p(N\text{-male}|J\text{-male}) > p(N\text{-male}|J\text{-neutral})$
Agreement within Noun Phrases

• Experiment: 7-gram POS, morph LM in addition to 3-gram word LM

• Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Agreement errors in NP</th>
<th>dev</th>
<th>test</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>15% in NP ≥ 3 words</td>
<td>18.22 BLEU</td>
<td>18.04 BLEU</td>
</tr>
<tr>
<td>factored model</td>
<td>4% in NP ≥ 3 words</td>
<td>18.25 BLEU</td>
<td>18.22 BLEU</td>
</tr>
</tbody>
</table>

• Example

 – baseline: ... zur zwischenstaatlichen methoden ...
 – factored model: ... zu zwischenstaatlichen methoden ...
BLEU Results

Systems for WMT10

<table>
<thead>
<tr>
<th>Language Pair</th>
<th>Baseline</th>
<th>Factored</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanish-English</td>
<td>26.03</td>
<td>26.20 (+0.17)</td>
</tr>
<tr>
<td>French-English</td>
<td>25.92</td>
<td>26.13 (+0.21)</td>
</tr>
<tr>
<td>German-English</td>
<td>19.51</td>
<td>21.09 (+0.24)</td>
</tr>
<tr>
<td>Czech-English</td>
<td>21.19</td>
<td>21.33 (+0.14)</td>
</tr>
<tr>
<td>English-Spanish</td>
<td>24.65</td>
<td>24.37 (−0.28)</td>
</tr>
<tr>
<td>English-French</td>
<td>24.70</td>
<td>24.74 (+0.04)</td>
</tr>
<tr>
<td>English-German (POS)</td>
<td>14.81</td>
<td>15.03 (+0.22)</td>
</tr>
<tr>
<td>English-German (morph)</td>
<td>14.81</td>
<td>15.28 (+0.47)</td>
</tr>
</tbody>
</table>
Insufficient Input

• Examples

Habla español. = He/she speaks Spanish.

His cousin is friendly. = \begin{align*}
& \text{Sein Vetter (male)} \\
& \text{Seine Base (female)} \\
\end{align*} ist freundlich.

• Occurs frequently when output language is morphologically richer

• May require document context for resolution
Case Information for English–Greek

- Detect in English, if noun phrase is subject/object (using parse tree)
- Map information into case morphology of Greek
- Use case morphology to generate correct word form
Results English-Greek

<table>
<thead>
<tr>
<th>System</th>
<th>devtest</th>
<th>test07</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>18.13</td>
<td>18.05</td>
</tr>
<tr>
<td>enriched</td>
<td>18.21 (+0.08)</td>
<td>18.20 (+0.15)</td>
</tr>
</tbody>
</table>

- Improvement in verb inflection

<table>
<thead>
<tr>
<th>System</th>
<th>Verb count</th>
<th>Errors</th>
<th>Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>311</td>
<td>19.0%</td>
<td>7.4%</td>
</tr>
<tr>
<td>enriched</td>
<td>294</td>
<td>5.4%</td>
<td>2.7%</td>
</tr>
</tbody>
</table>

- Improvement in noun phrase inflection

<table>
<thead>
<tr>
<th>System</th>
<th>NPs</th>
<th>Errors</th>
<th>Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>247</td>
<td>8.1%</td>
<td>3.2%</td>
</tr>
<tr>
<td>enriched</td>
<td>239</td>
<td>5.0%</td>
<td>5.0%</td>
</tr>
</tbody>
</table>
Pronoun Translation

The English *it* receives a grammatical gender in translation.

<table>
<thead>
<tr>
<th>English (it)</th>
<th>French</th>
<th>Correct/Incorrect</th>
</tr>
</thead>
<tbody>
<tr>
<td>The window is open.</td>
<td>La fenêtre est ouverte.</td>
<td>CORRECT</td>
</tr>
<tr>
<td>It is blue.</td>
<td>Elle est bleue.</td>
<td>CORRECT</td>
</tr>
<tr>
<td>The window is open.</td>
<td>La fenêtre est ouverte.</td>
<td>CORRECT</td>
</tr>
<tr>
<td>It is black.</td>
<td>Il est noir.</td>
<td>WRONG</td>
</tr>
<tr>
<td>The oven is open.</td>
<td>Le four est ouverte.</td>
<td>CORRECT</td>
</tr>
<tr>
<td>It is new.</td>
<td>Elle est neuve.</td>
<td>CORRECT</td>
</tr>
<tr>
<td>The door is open.</td>
<td>La porte est ouverte.</td>
<td>CORRECT</td>
</tr>
</tbody>
</table>
Co-Reference Resolution

The \textit{window} is open.

1. co-reference resolution

\textit{It} is blue.
Word Alignment

① co-reference resolution

The **window** is open.

② training: word alignment, test: translation mapping

It is blue.

La **fenêtre** est ouverte.
Gender Detection

The window is open.
It is blue.

La fenêtre est ouverte.
It-feminine is blue.

② training: word alignment, test: translation mapping

① co-reference resolution

③ lexical resources

FEMININE
Enriching Source

The window is open.
It is blue.

La fenêtre est ouverte.
It-feminine is blue.

② training: word alignment, test: translation mapping
① co-reference resolution
③ lexical resources
④ annotation
Enriching Source

- Training: word alignment, test: translation mapping
- Co-reference resolution
- Lexical resources
- Annotation

Results so far: only partially successful due to bad co-reference resolution
Problems for Machine Translation

- Increased vocabulary size → sparse data
 - splitting / factored approach

- Often added ambiguity (many interpretations per surface form)
 - factored approach

- Lack of information in source
 - enriching approach

- Enforcing long distance agreement
 - unsolved

- Transfer between different annotation schemes (free to fixed word order)
 - unsolved
Syntax to the Rescue

- Syntactic structure better at enforcing agreement

- Reordering driven by morphology (tree-to-string)
 \[S \rightarrow NP-acc_1 \text{ frißt } NP-nom_2 ; \ x_2 \text{ eats } x_1 \]

- Local agreement within noun phrases
 \[NP-dat \rightarrow \text{ the } X \text{ man } ; \text{ dem } ADJ-male-dat-sgl-def \text{ Manne} \]

- Long-range agreement within clauses
 \[S \rightarrow X_1 \text{ eats } x_2 ; \ NP-nom_1 \text{ frißt } NP-acc_2 \]
Problems

- Adding ambiguity
 - \texttt{DET-male-nom-sgl} \rightarrow \text{the}; \text{der}
 - \texttt{DET-fem-gen-sgl} \rightarrow \text{the}; \text{der}
 - \texttt{DET-neutral-gen-pl} \rightarrow \text{the}; \text{der}
 \rightarrow \text{spurious ambiguity during decoding}

- Increasing number of non-terminals and rules
 - bigger models
 - more complex decoding
 - overly specific rules are less applicable
Synchronous Unification Grammar

• Ongoing work...

• Principles
 – separate translation rules and constraints
 – overcome interpretation ambiguity by maintaining sets in hypotheses
 – overcome sparsity of forms by generation step
Questions?