Comparative Evaluation of Research vs. Online MT Systems

Antonio Toral†, Federico Gaspari†, Sudip Kumar Naskar†* and Andy Way†*

CoSyne† / CNGL*
School of Computing
Dublin City University
Glasnevin, Dublin 9, Ireland

{ataloral, fgaspari, snaskar, away}@computing.dcu.ie
Outline

• Introduction

• MT evaluation metrics

• Data sets

• MT systems

• Results

• Conclusion

• Future work
Introduction

• Experiments at the end of Y1 of 3-year EU-funded CoSyne project

• Three language pairs evaluated on data from the news domain
 ◦ DE → EN
 ◦ IT → EN
 ◦ NL → EN

• Compared CoSyne MT system against 4 free web-based systems

• Wide range of state-of-the-art automatic evaluation metrics used
Introduction: CoSyne

• FP7 STREP project (call 4, objective 2.2)
• 3 years: Mar 2010 – Feb 2013

• Objective: to automate the dynamic multilingual content synchronization process of wikis across languages

• Languages
 ◦ 4 core languages: English, German, Italian and Dutch
 ◦ 2 less resourced languages: Turkish and Bulgarian (year 3)

• The CoSyne system will be integrated via web services with the open-source MediaWiki package

• The overall CoSyne system includes
 ◦ Document structure modeling
 ◦ Document structure induction
 ◦ Textual entailment
 ◦ Machine translation
Introduction: CoSyne

• Consortium
 ◦ 7 partners from 4 EU countries: Germany, Ireland, Italy and the Netherlands

• 3 academic partners
 ◦ University of Amsterdam (UvA)
 ◦ Fondazione Bruno Kessler (FBK)
 ◦ Dublin City University (DCU)

• 1 research organization
 ◦ Heidelberg Institute for Theoretical Studies (HITS)

• 3 end users
 ◦ Deutsche Welle (DW) - Poster in EU projects section!
 ◦ Netherlands Institute for Sound and Vision (NISV)
 ◦ Vereniging Wikimedia Nederland (VWN)
MT evaluation metrics

- BLEU (Papineni et al., 2002)
 - n-gram based

- NIST (Doddington, 2002)

- GTM (Turian et al., 2003) based on standard measures in NLP

- METEOR (Banerjee and Lavie, 2005) additional linguistic information (stemming, synonyms)
 - METEOR-NEXT

- TER (Snover et al., 2006) error rates
 - TERp

- DCU-LFG (Owczarzak et al., 2007; He et al., 2010) syntactic dependencies
Data sets

• From the news domain
 ◦ to match usage scenarios envisaged by end users

• Language pairs
 ◦ DE — EN
 ◦ IT — EN
 ◦ NL — EN

• 2,000 sentence pairs per language combination
 ◦ 1k development + 1k evaluation
Data for DE—EN (DW)

• Documents provided by DW from two online journals
 ◦ Europa Aktuell 2001 to 2010: 2,201 documents
 ◦ Global 3,000: 80 documents

• XML format + alignment scores (sentence, doc, etc.)
 ◦ DE: 25,797 words (average sentence length: 12.9 words)
 ◦ EN: 26,938 words (average sentence length: 13.47 words)

• Tools used to align text
 ◦ TreeTagger
 ◦ Hunalign along with a bilingual dictionary derived from Apertium’s DE—EN dictionary
Data for IT—EN (DCU)

- Manual download and alignment of parallel documents
- AsiaNews website (up to July 2010): 87 document pairs
 - IT: 38,607 words (average document length: 444 words)
 - EN: 38,090 words (average document length: 438 words)
Data for NL—EN (NISV)

• Three different data sets:
 ◦ België Diplomatie: 418 HTML doc pairs
 ◦ Video Active: 1,076 doc pairs (XML format)
 ◦ NISV Wiki: 30 doc pairs
 • NL: 45,546 words (average sentence length: 22.8 words)
 • EN: 46,390 words (average sentence length: 23.2 words)

• Same tools used to align text as for DE—EN
 ◦ Bilingual dictionary from Apertium’s NL—EN dictionary
MT systems

• Free online MT systems
 ◦ Statistical systems
 - Google Translate (Google)
 - Bing Translator (Microsoft)
 ◦ Rule-based systems
 - Systran
 - FreeTranslation (SDL)

• The research MT system
 ◦ CoSyne MT system (Martzoukos & Monz, 2010)
 - Statistical system
 - Developed by UvA (thanks to Christof Monz and his team for making it available for these experiments)
Recap – MT evaluation results

• Language pairs
 ◦ DE → EN
 ◦ IT → EN
 ◦ NL → EN

• MT systems
 ◦ Google Translate
 ◦ Bing Translator
 ◦ Systran
 ◦ FreeTranslation
 ◦ CoSyne MT system at M12

• MT evaluation metrics
 ◦ BLEU, METEOR, METEOR-NEXT, GTM, DCU-LFG, NIST, TER and TERp
 ◦ Statistical significance tests provided only for BLEU, NIST and GTM

Divided by a factor of 10 for consistency

Given as 1-x to reverse the trend for comparability
DE → EN results

DE-EN

<table>
<thead>
<tr>
<th>Metric</th>
<th>Google</th>
<th>Bing</th>
<th>Systran</th>
<th>Freetranslation</th>
<th>CoSyne M12</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLEU</td>
<td>0.2477</td>
<td>0.2294</td>
<td>0.1752</td>
<td>0.1657</td>
<td>0.2052</td>
</tr>
<tr>
<td>NIST</td>
<td>0.6358</td>
<td>0.6362</td>
<td>0.5447</td>
<td>0.5212</td>
<td>0.5788</td>
</tr>
<tr>
<td>METEOR</td>
<td>0.5830</td>
<td>0.5584</td>
<td>0.5239</td>
<td>0.5060</td>
<td>0.5470</td>
</tr>
<tr>
<td>METEOR-NEXT</td>
<td>0.4977</td>
<td>0.4807</td>
<td>0.4552</td>
<td>0.4422</td>
<td>0.4692</td>
</tr>
<tr>
<td>TERp</td>
<td>0.4000</td>
<td>0.3600</td>
<td>0.3216</td>
<td>0.3100</td>
<td>0.2941</td>
</tr>
<tr>
<td>TER</td>
<td>0.4172</td>
<td>0.4161</td>
<td>0.3444</td>
<td>0.3273</td>
<td>0.3700</td>
</tr>
<tr>
<td>GTM</td>
<td>0.4517</td>
<td>0.4270</td>
<td>0.4057</td>
<td>0.3849</td>
<td>0.3914</td>
</tr>
<tr>
<td>DCU-LFG</td>
<td>0.4899</td>
<td>0.4570</td>
<td>0.4133</td>
<td>0.3957</td>
<td>0.4261</td>
</tr>
</tbody>
</table>
• SMT systems perform better than RBMT systems

• For most metrics (except TERp and GTM) the performance of the CoSyne MT system is between SMT systems and RBMT systems

• Google beats Bing according to almost all metrics (NIST is a tie)

• Systran outperforms FreeTranslation across all the metrics
IT → EN results

<table>
<thead>
<tr>
<th>Metric</th>
<th>Google</th>
<th>Bing</th>
<th>Systran</th>
<th>Freetranslation</th>
<th>CoSyne M12</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLEU</td>
<td>0.4235<sup>b,c,d,e</sup></td>
<td>0.3106<sup>c,d</sup></td>
<td>0.1840<sup>d</sup></td>
<td>0.1754</td>
<td>0.3137<sup>c,d</sup></td>
</tr>
<tr>
<td>NIST</td>
<td>0.8579<sup>b,c,d,e</sup></td>
<td>0.7517<sup>c,d,e</sup></td>
<td>0.5439<sup>d</sup></td>
<td>0.5427</td>
<td>0.7318<sup>c,d</sup></td>
</tr>
<tr>
<td>METEOR</td>
<td>0.7017</td>
<td>0.6384</td>
<td>0.5709</td>
<td>0.5537</td>
<td>0.6565</td>
</tr>
<tr>
<td>METEOR-NEXT</td>
<td>0.5942</td>
<td>0.5412</td>
<td>0.4832</td>
<td>0.4700</td>
<td>0.5545</td>
</tr>
<tr>
<td>TERp</td>
<td>0.5600</td>
<td>0.4700</td>
<td>0.3890</td>
<td>0.3800</td>
<td>0.4946</td>
</tr>
<tr>
<td>TER</td>
<td>0.5599</td>
<td>0.4857</td>
<td>0.3225</td>
<td>0.3128</td>
<td>0.4679</td>
</tr>
<tr>
<td>GTM</td>
<td>0.6187<sup>b,c,d,e</sup></td>
<td>0.5394<sup>c,d</sup></td>
<td>0.4596<sup>d</sup></td>
<td>0.4510</td>
<td>0.5475<sup>c,d</sup></td>
</tr>
<tr>
<td>DCU-LFG</td>
<td>0.6400</td>
<td>0.5200</td>
<td>0.4244</td>
<td>0.4080</td>
<td>0.5311</td>
</tr>
</tbody>
</table>
IT → EN discussion

• Google is the clear top performer across all the metrics

• CoSyne MT system performs better than Bing in most metrics (except NIST and TER, but close scores)

• The two RBMT systems attain very similar scores for all evaluation metrics, showing much poorer performances than the SMT systems
NL → EN results

<table>
<thead>
<tr>
<th>Metric</th>
<th>Google</th>
<th>Bing</th>
<th>Systran</th>
<th>Freetranslation</th>
<th>CoSyne M12</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLEU</td>
<td>0.3330<sup>c,d,e</sup></td>
<td>0.3347<sup>c,d,e</sup></td>
<td>0.2643<sup>d</sup></td>
<td>0.2456</td>
<td>0.3223<sup>c,d</sup></td>
</tr>
<tr>
<td>NIST</td>
<td>0.7986<sup>b,c,d,e</sup></td>
<td>0.7596<sup>c,d</sup></td>
<td>0.6830<sup>d</sup></td>
<td>0.6479</td>
<td>0.7532<sup>c,d</sup></td>
</tr>
<tr>
<td>METEOR</td>
<td>0.6633</td>
<td>0.6695</td>
<td>0.6161</td>
<td>0.5964</td>
<td>0.6431</td>
</tr>
<tr>
<td>METEOR-NEXT</td>
<td>0.5583</td>
<td>0.5628</td>
<td>0.5180</td>
<td>0.5032</td>
<td>0.5419</td>
</tr>
<tr>
<td>TERp</td>
<td>0.4987</td>
<td>0.5066</td>
<td>0.4315</td>
<td>0.4123</td>
<td>0.4690</td>
</tr>
<tr>
<td>TER</td>
<td>0.5251</td>
<td>0.4892</td>
<td>0.4424</td>
<td>0.4221</td>
<td>0.5000</td>
</tr>
<tr>
<td>GTM</td>
<td>0.5339<sup>b,c,d,e</sup></td>
<td>0.5156<sup>c,d,e</sup></td>
<td>0.4761<sup>d</sup></td>
<td>0.4672</td>
<td>0.4956<sup>c,d</sup></td>
</tr>
<tr>
<td>DCU-LFG</td>
<td>0.5459</td>
<td>0.5507</td>
<td>0.4661</td>
<td>0.4411</td>
<td>0.5080</td>
</tr>
</tbody>
</table>
• SMT systems outperform RBMT systems

• Google outperforms Bing for NIST, TER and GTM, while for the other metrics Bing receives higher scores

• CoSyne MT system performs better than the RBMT systems and is close to Google and Bing
 ◦ CoSyne MT system performs better than Bing according to TER
Summary of results

• The three SMT systems receive (much) higher scores than the two RBMT systems for all the 8 evaluation metrics in each of the 3 language pairs

• Overall Google Translate receives the best scores consistently across most of the metrics for all 3 language pairs

• Bing Translator and the CoSyne MT system perform similarly
 ◦ Inferior than Google, but better than Systran and FreeTranslation

• CoSyne good for IT / NL → EN, improvement needed for DE → EN

• Among the RBMT systems, Systran always performs better than FreeTranslation according to all the 8 evaluation metrics for the 3 language pairs
Conclusion

• CoSyne MT system evaluation (M12 implementation)
 ◦ against four free online MT systems
 ◦ for 3 language pairs (DE / IT / NL → EN)
 ◦ across 8 automatic MT evaluation metrics

• Assessed the performance of the MT component of the CoSyne system against state-of-the-art MT systems

• Monitor progress over time

• Prioritize and focus efforts on the development and fine-tuning of language pairs requiring improvement (e.g. DE → EN)
Future work

• Diagnostic evaluation
 ◦ Analysis of TER results (INS, DEL, SUB, SHFT) [currently underway]
 ◦ Methodology based on linguistic checkpoints following Zhou et al. (2008) to evaluate system over any linguistic phenomenon [Feb. 2012]

• Correlations of automatic evaluation metrics with human judgments and perception of MT quality (staff at end user partners) [Aug. 2011]
Thank you for your attention!

Questions?

Comparative Evaluation of Research vs. Online MT Systems

Antonio Toral†, Federico Gaspari†, Sudip Kumar Naskar†* and Andy Way†*

CoSyne† / CNGL*
School of Computing
Dublin City University
Glasnevin, Dublin 9, Ireland

{ataloral, fgaspari, snaskar, away}@computing.dcu.ie