Advancements in Arabic-to-English Hierarchical Machine Translation

Matthias Huck, David Vilar, Daniel Stein, Hermann Ney

EAMT 2011
Leuven, Belgium – May 31, 2011

Human Language Technology and Pattern Recognition
Lehrstuhl für Informatik 6
Computer Science Department
RWTH Aachen University, Germany
Outline

1. Review: Hierarchical phrase-based translation
2. Extensions
 - Shallow rules
 - IBM-style reorderings
 - Soft syntactic labels
 - Lightly-supervised training
 - Discriminative word lexicon
3. Experimental results NIST Arabic→English
Review: Hierarchical Phrase-based Translation

- Allow for *gaps* in the phrases
- Formalization as a *synchronous context-free grammar*
 - Rules of the form $X \rightarrow \langle \gamma, \alpha, \sim \rangle$, where:
 - X is a non-terminal
 - γ and α are strings of terminals and non-terminals
 - \sim is a one-to-one correspondence between the non-terminals of α and γ
- *Parsing-based decoding* (extension of CYK algorithm)
Review: Hierarchical Extraction Process

▶ Basic idea:
 ▶ Extract standard phrases
 ▶ If the extracted phrases contain further sub-phrases, create “holes”
 ▶ Assign probabilities using relative frequencies

▶ Main restrictions:
 ▶ Maximum of two non-terminals per rule
 ▶ Non-terminals must be non-adjacent in the source side
 ▶ Rules must have at least one terminal symbol

▶ Additionally: *Initial and glue rule*

\[
S \rightarrow \langle X^0, X^0 \rangle \\
S \rightarrow \langle S^0 X^1, S^0 X^1 \rangle
\]

▶ Only one *generic non-terminal symbol* X plus the start symbol S
Hierarchical Rules: Example

Alignment

Standard phrases

Hierarchical rule

meal • • • • •
toddler • • • • •
a • • • • •
order • • • • •
you • • • • •
did • • • • •

ha •
ordinato •
un •
piatto •
per •
bambini •

X~0

X~1
toddler • • • • •
a • • • • •
order • • • • •
you • • • • •
did • • • • •

ha •
ordinato •
un •
piatto •
per •
bambini •

X~0

X~1
Review: CYK Algorithm

- Parse tree of the source sentence induces a parse tree of the target sentence
- Additionally to parsing algorithm: Handle translation alternatives
- Cube pruning [Huang and Chiang, ACL 2007]
Hierarchical Phrase-based Translation System

Extensions described here have been integrated into an open source toolkit:

RWTH’s open source hierarchical phrase-based translation toolkit
(free for non-commercial purposes)

Implemented in C++

See [Vilar et al., WMT 2010]

http://www.hltp.rwth-aachen.de/jane
Our baseline setup: 2.5M sentences of parallel training data

Systems tuned towards BLEU on MT06

Results reported on MT08 (news wire and web text) as unseen test set (45K running words)

<table>
<thead>
<tr>
<th>Arabic → English (MT08)</th>
<th>Arabic → English (MT08)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLEU [%]</td>
<td>TER [%]</td>
</tr>
<tr>
<td>HPBT Baseline</td>
<td>44.3 ±1.1</td>
</tr>
</tbody>
</table>

Tiny numbers: 95% confidence interval

For comparison: RWTH’s standard *PBT* baseline system (without extensions) performs at 44.7 % BLEU / 49.1 % TER with the same parallel training data and LM
Extensions to Hierarchical Machine Translation

Goals:

- Significantly improved translation quality within large-scale Arabic→English system
- Decoding speedups without loss in translation performance

Evaluated techniques:

- Shallow rules
- IBM-style reorderings
- Soft syntactic labels
- Lightly-supervised training
- Discriminative word lexicon
Related Work

▶ [Iglesias et al., EACL 2009]
 Shallow rules for efficient hierarchical phrase-based decoding
▶ [Vilar et al., WMT 2010]
 IBM-style reorderings for HPBT (German → English)
▶ [Stein et al., AMTA 2010]
 Syntactic extensions to HPBT (Chinese → English)
▶ [Schwenk, IWSLT 2008]
 Lightly-supervised training for phrase-based system (French → English)
▶ [Mauser et al., EMNLP 2009]
 Discriminative word lexicon model in phrase-based system
Shallow Rules

Idea:
- Modification of the grammar to constrain the search space
- *Restriction of the depth of the hierarchical recursion to one*
- No modifications to the decoder necessary

Method:
- Generic non-terminal X replaced by two distinct non-terminals XH and XP
- On all right-hand sides of hierarchical rules: XP
- Left-hand sides of lexical rules: XP
- Left-hand sides of hierarchical rules: XH
- Gaps within hierarchical phrases can thus only be filled with purely lexicalized phrases
Shallow Rules: Initial and Glue Rule

- **Initial rule** has to be substituted with two rules

\[
S \rightarrow \langle XP^0, XP^0 \rangle \\
S \rightarrow \langle XH^0, XH^0 \rangle
\]

- **Glue rule** has to be substituted with two rules

\[
S \rightarrow \langle S^0 XP^1, S^0 XP^1 \rangle \\
S \rightarrow \langle S^0 XH^1, S^0 XH^1 \rangle
\]
IBM-Style Reorderings

Idea:
▶ Include additional reorderings on top of the hierarchically motivated ones

Method:
▶ *Phrase-based IBM-style reorderings with a window length of 1*
▶ Grammar-based implementation (replacement of initial and glue rule), with minimal modifications to the decoder
▶ Computation of distance-based jump cost
IBM-Style Reorderings: Initial and Glue Rule

\[
\begin{align*}
S & \rightarrow \langle M^0, M^0 \rangle \\
S & \rightarrow \langle M^0 S^1, M^0 S^1 \rangle \\
S & \rightarrow \langle B^0 M^1, M^1 B^0 \rangle \\
M & \rightarrow \langle X^0, X^0 \rangle \\
M & \rightarrow \langle M^0 X^1, M^0 X^1 \rangle \\
B & \rightarrow \langle X^0, X^0 \rangle \\
B & \rightarrow \langle B^0 X^1, B^0 X^1 \rangle
\end{align*}
\]

- **M** non-terminal represents a block that will be translated in a monotonic way
- **B** is a “back jump”
- Keep them separate for more flexibility (e.g. restriction of jump width)
Soft Syntactic Labels: Principle

- Use *labels from syntactic parse trees* to replace the generic non-terminals in the translation process.
- Target side of the training data is parsed (here: Berkeley Parser [Petrov et al. 2006]).
- Resulting syntax trees are used in the rule extraction process.

```
S
  /---- WHADVP
    /---- WRB
       /---- Where
    
    /---- VP
       /---- AUX
          /---- NP
                 /---- DT
                           /---- JJ
                                    /---- NN
                                         /---- the
                                              /---- public
                                                   /---- toilet
```
Computation of two additional models for the log-linear combination

1. *Tree well-formedness probability model* p_{syntax} for the parse tree constructed by the decoder

2. *Penalty for non-matching non-terminals*

Same phrase pairs, but syntax is stored as additional information in the rules

Before: set of non-terminals $\mathcal{NT} = \{S, X\}$

Now extended by a set of non-terminals in the additional model $\mathcal{H} = \{NP, PP, NN, DT \ldots\}$
Soft Syntactic Labels: Decoding

\[X \rightarrow uXvXw \]

\[p(A \rightarrow uDvCw|r) \]
\[p(B \rightarrow uAvBw|r) \]
\[p(C \rightarrow uCvDw|r) \]

\[p(A|d_1) \]
\[p(D|d_1) \]

\[p(B|d_2) \]
\[p(C|d_2) \]
\[p(E|d_2) \]

\[p(h_0|d_1) \text{ is a computed distribution over all labels } h_0 \in \mathcal{H} \text{ for sub-derivation } d_1 \]

\[p(h|r) \text{ is the distribution computed in the rule extraction for rule } r \]
Lightly-Supervised Training

Idea:

➤ *Automatically translate monolingual source language corpora*
➤ Create word alignments on resulting bitexts
➤ *Use as unsupervised parallel training data*

Method:

➤ Cross-system and cross-paradigm variant of lightly-supervised training
 ▶ Automatic translations of parts of the Arabic LDC Gigaword corpus
 ▶ Created with a standard phrase-based system and kindly provided by Holger Schwenk, LIUM, Le Mans
 ▶ Selection of *4.7M sentence pairs*
 ▶ Used as additional training material for RWTH’s HPBT system
➤ Lexical phrases extracted from unsupervised data, hierarchical phrases from more reliable human-generated parallel data only
➤ Number of non-hierarchical phrases increased by roughly 30%
Discriminative Word Lexicon (DWL)

Discriminative, log-linear lexicon model: \(p(e | f_1^J) \)

▸ **Predict the words contained in the translation from the words given in the source sentence**

▸ 2-class classification problem:
 target word included / not included in translation

▸ Features: words in the source sentence

▸ Captures context beyond phrase boundaries and \(n \)-gram language model history

Training:

▸ Improved RProp+ [Igel & Hüsken 2003], L2-regularization

▸ Easy to parallelize: one target word per core

▸ But many parameters: weights for all source word / target word combinations

▸ Full model trained, threshold pruning applied afterwards to discard features with low values (separate for each class)
DWL model trained on a high-quality subset of 0.3M sentence pairs

RProp+: 100 iterations per target word

Pruned with threshold 0.1

On average 80 features per target word (unpruned: 122,592)
Experimental Results NIST Arabic → English

<table>
<thead>
<tr>
<th></th>
<th>Arabic → English (MT08)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>deep</td>
</tr>
<tr>
<td></td>
<td>BLEU [%]</td>
</tr>
<tr>
<td>HPBT Baseline</td>
<td>44.3 ± 1.1</td>
</tr>
<tr>
<td>+ Unsup</td>
<td>45.0 +0.7</td>
</tr>
<tr>
<td>+ Unsup + DWL</td>
<td>45.7 +1.4</td>
</tr>
<tr>
<td>+ Unsup + Syntactic Labels</td>
<td>45.2 +0.9</td>
</tr>
<tr>
<td>+ Unsup + Reorderings</td>
<td>45.3 +1.0</td>
</tr>
<tr>
<td>+ Unsup + DWL + Syntactic Labels</td>
<td>46.0 +1.7</td>
</tr>
<tr>
<td>+ Unsup + DWL + Reorderings</td>
<td>45.7 +1.4</td>
</tr>
</tbody>
</table>

- The 95% confidence interval is given for the baseline systems.
- Highlighted results are significantly better than the baseline.
Summary

- Significant improvements in Arabic \rightarrow English HPBT due to
 - lightly-supervised training
 - a discriminative word lexicon
- Decoding speedups (factor 5-10) without loss in translation quality with shallow rules
- *Soft syntactic labels* and additional IBM-style *reorderings* have little to no impact
Thank you for your attention

Matthias Huck

huck@cs.rwth-aachen.de

http://www-i6.informatik.rwth-aachen.de/