CCG Contextual Labels in Hierarchical Phrase-Based SMT

Hala Almaghout, Jie Jiang, Andy Way

CNGL, School of Computing, Dublin City University
Outline

- Introduction
- Related Work
- Our Approach
- Experiments
- Analysis
- Conclusion
- Future Work
Hierarchical Phrase-Based SMT (Chiang, 2005)

- **Parallel Corpus**
 - Source Text
 - Target Text
 - Training
 - Tuning
 - Development set

- **Synchronous Context-Free Grammar**
 - \[\sum \lambda \log(p_i) \]

- **He bought a ticket from Ankara to Dublin**
 - a ticket
 - Ankara
 - Dublin
 - from Ankara to Dublin
 - He bought a ticket
 - He bought a ticket from Ankara to Dublin
He bought a ticket from Ankara to Dublin

Hierarchical Rule Extraction

S \rightarrow (X2 \rightarrow (X1, He bought a ticket from X1 to X2))

source side nonterminals

source side nonterminals

Left hand side nonterminal

target side

target side nonterminals

He bought a ticket from Ankara to Dublin

from Ankara to Dublin

a ticket from from Ankara to Dublin

He bought a ticket from Ankara to Dublin
There are no syntactic constraints imposed on phrases replacing nonterminals in hierarchical rules.

Solution:

Syntax Augmented Machine Translation (SAMT) (Zollmann and Venugopal, 2006)
Syntax Augmented Machine Translation (SAMT)

He bought a ticket from Ankara to Dublin

S → (NP

VP\VBD → (NP

PP+PP → (NP

VP\VBD → (PP+PP

S → VP\VBD

X → (Ankara to Dublin)

S → (He bought a ticket from X)
He bought a ticket from Ankara to Dublin.

He bought a ticket from from Ankara to Dublin.

He bought a ticket from Ankara to Dublin.

He bought a ticket from Ankara to Dublin.
He bought a ticket from Ankara to Dublin.

SAMT Rule Extraction

S → (NP を MEN ヒブから POV 向けた BO を NNP を MEN 向けた BO から NNP を MEN 向けた － , a ticket Men MEN 向けた BO から NNP を MEN 向けた BO から NNP を MEN 向けた － , from NNP 向けた BO から NNP を MEN 向けた － , a ticket PP+PP)

VP/VBD → (NP を MEN 向けた BO から NNP を MEN 向けた BO から NNP を MEN 向けた － , a ticket PP+PP)

PP+PP → (NP を MEN 向けた BO から NNP を MEN 向けた BO から NNP を MEN 向けた － , from NNP 向けた BO から NNP を MEN 向けた － , a ticket PP+PP)

S → (VP/VBD を MEN 向けた BO から NNP 向けた BO から NNP 向けた － , a ticket PP+PP)

X → (NP を MEN 向けた BO から NNP 向けた BO から NNP 向けた － , from NNP 向けた BO から NNP 向けた － , a ticket PP+PP)

S → (X を MEN 向けた BO から NNP 向けた BO から NNP 向けた － , a ticket PP+PP)

He bought a ticket from X.
SAMT Limitations

- **Label sparsity**: using many different nonterminal labels. This results from using SAMT combinatory operators.

 \[S \rightarrow (X, \text{He bought a ticket}) \]

 \[S \rightarrow (PP, \text{He bought a ticket}) \]

 \[S \rightarrow (PP+PP, \text{He bought a ticket}) \]

 \[S \rightarrow (SBAR, \text{He bought a ticket}) \]

- **Label coverage**: failing to find a syntactic label expressing the syntactic function of some of SMT phrases.

- **Label accuracy**: how accurate the SAMT labels are in reflecting the real syntactic function of the phrases.

 - SAMT has larger translation model.
 - Low-probability rules weaken the system’s ability to generalize, and damage the performance of the system.
Producing more grammatical translation by imposing syntactic constraints on nonterminal replacement

Constituency grammar rigid structures \rightarrow Label coverage
SAMT combinatory operators \rightarrow Label sparsity & accuracy

Using Combinatory Categorial Grammar (CCG) to label target-side phrases instead of constituency grammar
+ CCG more flexible and richer structures \rightarrow Label coverage
+ CCG supertags reflect rich syntactic information at the lexical level \rightarrow Label sparsity & accuracy
+ CCG is efficiently parsed
Combinatory Categorial Grammar (CCG)

CCG = Lexicon + Combinatory Operators

Lexicon:
- He → NP
- Walks → S\NP
- reads → (S\NP)/NP, S\NP
- a → NP/N
- book → N, (S\NP)/NP
- ...

Combinatory Operators:
- FA: X/Y → Y
- BA: Y X\Y → Y
- FC: X/Y Y/Z → X/Z
- BC: Y\Z X\Y → X\Z

He walks NP S\NP

He reads a book NP (S\NP)/NP NP/N N

S\NP

S

Primitive Category

Complex Category of the form X\Y
CCG-Augmented Hierarchical Phrase-Based SMT

Coarse-grained Chomsky Normal Form (CCG)

Syntactic Analysis & Annotation

Parallel Corpus

Source Text

Target Text

Training

Development set

Translation model

Translation

Output

He bought a ticket from Ankara to Dublin

S[dcl] → NP → NP

He bought a ticket from NP to NP

NP → (NP → NP)

a ticket from NP to NP

NP

Ankara

NP

bought

(S[dcl])/NP

to (NP/NP)/NP

ticket N

from ((NP/NP)/(NP/NP))/NP

Dublin NP

Σ ∑ log(πi)

 Arabic Text

دن إاشتراي بطاقة من اتراكا إلى دبلن

He bought a ticket from Ankara to Dublin
He bought a ticket from Ankara to Dublin
CCG-Augmented HPB SMT vs. SAMT

CCG-Augmented HPB system outperformed SAMT in terms of BLEU score on Arabic—English and Chinese—English news translation.

- CCG supertag labels are less sparse and are able to label more phrases than SAMT labels.
- CCG-Augmented HPB system could not outperform the HPB baseline.
- CCG supertag labels still suffer from label sparsity problem.

Number of different syntactic labels vs. Percentage of phrase-pairs without syntactic label.
Solution

- **Softening** CCG supertags labels by employing part of the information represented in them.
- Two softening methods:
 - CCG contextual labels
 - Feature-removed CCG labels
- Goal:
 - Reduce label sparsity.
 - Loosen syntactic constraints.
- However, this comes at the expense of the accuracy of the syntactic labels.
He bought a ticket from Ankara to Dublin.
CCG contextual labels can be extracted directly from CCG supertags without the need to parse the phrase.

He bought a ticket from Ankara to Dublin.
Feature-removed CCG Labels

- S[dcl]\NP → Declarative Verb Phrase
- S[to]\NP → Infinitival Verb Phrase
- S[pt]\NP → Past Participle Verb Phrase

S\NP
Experiments

- **Language pairs**: Arabic—English and Chinese—English
- **Data used**: from the news and travelling speech expressions domains (IWSLT 2010 evaluation campaign).

<table>
<thead>
<tr>
<th></th>
<th>News</th>
<th>IWSLT</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE (ar-en)</td>
<td>48065</td>
<td>21484</td>
</tr>
<tr>
<td>CE (zh-en)</td>
<td>51044</td>
<td>63234</td>
</tr>
</tbody>
</table>

- **Baseline Systems**:
 - The PB baseline system: built using the Moses PB Decoder.
 - The HPB baseline system: built using the Moses Chart Decoder.

- **CCG-based Systems**:
 - CCG Context: uses CCG contextual labels.
 - CCG: uses CCG supertag labels.
 - CCG (s): uses feature-removed CCG supertag labels.
 - CCG Context (s): uses feature-removed CCG contextual labels.
BLEU Scores for Arabic—English Experiments

Ar-En News

- CCG: 24
- PB: 23
- CCG Context: 23
- HPB: 21
- CCG (s): 20

Ar-En IWSLT

- HPB: 54
- CCG Context (s): 53
- CCG Context: 53
- CCG (s): 52
- CCG: 51
- PB: 50

- **0.56 BLEU points Statistically Significant at p-level=0.05**
- **0.06 BLEU points Only 20k**
BLEU Scores for Chinese—English Experiments

Zh-En News

- CCG (s): 24
- PB: 24
- HPB: 24
- CCG Context: 24
- CCG: 24
- CCG Context (s): 24

Zh-En IWSLT

- CCG Context: 51
- HPB: 51
- CCG Context (s): 51
- CCG (s): 49
- CCG: 47
- PB: 45

0.03 BLEU points

0.56 BLEU points
Label Sparsity

simplified CCG labels are less sparse than CCG supertag labels
Conclusions

- CCG label simplification demonstrated to be promising
 - At least one of the systems which use simplified CCG labels achieved better BLEU score than the CCG supertags HPB baseline.
 - Simplified CCG label systems were the best performing systems on all but AE IWSLT experiment.

- In comparison with CCG supertag labels, CCG contextual labels demonstrated to be:
 - less sparse
 - easier to extract than CCG supertags

- Simplification schemes did not show consistent improvement over baseline systems on a specific language pair or corpus type.
Future Work

- Conducting a thorough evaluation of *CCG label simplification schemes* using *larger training corpora* and on *more language pairs*.
- Examining the effect of *source language segmentation* on the performance of CCG-based systems.
- Using *system combination* on CCG-based systems to obtain a better performing system.
- Conducting a *manual analysis* on selected sentences to examine the effect of using CCG-based labels on producing more grammatical translations.
Thanks for your Attention!
Questions??