BabelNet: Building a Very Large Multilingual Semantic Network

Roberto Navigli
Dipartimento di Informatica
Sapienza Università di Roma
navigli@di.uniroma1.it

Simone Paolo Ponzetto
Department of Computational Linguistics
Heidelberg University
ponzetto@cl.uni-heidelberg.de

Abstract

In this paper we present BabelNet – a very large, wide-coverage multilingual semantic network. The resource is automatically constructed by means of a methodology that integrates lexicographic and encyclopedic knowledge from WordNet and Wikipedia. In addition Machine Translation is also applied to enrich the resource with lexical information for all languages. We conduct experiments on new and existing gold-standard datasets to show the high quality and coverage of the resource.

1 Introduction

In many research areas of Natural Language Processing (NLP) lexical knowledge is exploited to perform tasks effectively. These include, among others, text summarization (Nastase, 2008), Named Entity Recognition (Bunescu and Pasca, 2006), Question Answering (Harabagiu et al., 2000) and text categorization (Gabrilovich and Markovitch, 2006). Recent studies in the difficult task of Word Sense Disambiguation (Navigli, 2009b, WSD) have shown the impact of the amount and quality of lexical knowledge (Cuadros and Rigau, 2006): richer knowledge sources can be of great benefit to both knowledge-lean systems (Navigli and Lapata, 2010) and supervised classifiers (Ng and Lee, 1996; Yarowsky and Florian, 2002).

Various projects have been undertaken to make lexical knowledge available in a machine readable format. A pioneering endeavor was WordNet (Fellbaum, 1998), a computational lexicon of English based on psycholinguistic theories. Subsequent projects have also tackled the significant problem of multilinguality. These include EuroWordNet (Vossen, 1998), MultiWordNet (Pianta et al., 2002), the Multilingual Central Repository (Atserias et al., 2004), and many others. However, manual construction methods inherently suffer from a number of drawbacks. First, maintaining and updating lexical knowledge resources is expensive and time-consuming. Second, such resources are typically lexicographic, and thus contain mainly concepts and only a few named entities. Third, resources for non-English languages often have a much poorer coverage since the construction effort must be repeated for every language of interest. As a result, an obvious bias exists towards conducting research in resource-rich languages, such as English.

A solution to these issues is to draw upon a large-scale collaborative resource, namely Wikipedia1. Wikipedia represents the perfect complement to WordNet, as it provides multilingual lexical knowledge of a mostly encyclopedic nature. While the contribution of any individual user might be imprecise or inaccurate, the continual intervention of expert contributors in all domains results in a resource of the highest quality (Giles, 2005). But while a great deal of work has been recently devoted to the automatic extraction of structured information from Wikipedia (Wu and Weld, 2007; Ponzetto and Strube, 2007; Suchanek et al., 2008; Medelyan et al., 2009, inter alia), the knowledge extracted is organized in a looser way than in a computational lexicon such as WordNet.

In this paper, we make a major step towards the vision of a wide-coverage multilingual knowledge resource. We present a novel methodology that produces a very large multilingual semantic network: BabelNet. This resource is created by linking Wikipedia to WordNet via an automatic mapping and by integrating lexical gaps in resource-

1http://download.wikipedia.org. We use the English Wikipedia database dump from November 3, 2009, which includes 3,083,466 articles. Throughout this paper, we use Sans Serif for words, SMALL CAPS for Wikipedia pages and CAPITALS for Wikipedia categories.
2 BabelNet

We encode knowledge as a labeled directed graph $G = (V, E)$ where V is the set of vertices – i.e. concepts2 such as balloon – and $E \subseteq V \times R \times V$ is the set of edges connecting pairs of concepts. Each edge is labeled with a semantic relation from R, e.g. \{is-a, part-of, \ldots, \epsilon\}, where ϵ denotes an unspecified semantic relation. Importantly, each vertex $v \in V$ contains a set of lexicalizations of the concept for different languages, e.g. \{ balloon$^{\text{EN}}$, balloon$^{\text{DE}}$, balloontc$^{\text{IT}}$, montgolfi`ere$^{\text{FR}}$ \}.

Concepts and relations in BabelNet are harvested from the largest available semantic lexicon of English, WordNet, and a wide-coverage collaboratively edited encyclopedia, the English Wikipedia (Section 3.1). We collect (a) from WordNet, all available word senses (as concepts) and all the semantic pointers between synsets (as relations); (b) from Wikipedia, all encyclopedic entries (i.e. pages, as concepts) and semantically unspecified relations from hyperlinked text.

In order to provide a unified resource, we merge the intersection of these two knowledge sources (i.e. their concepts in common) by establishing a mapping between Wikipedia pages and WordNet senses (Section 3.2). This avoids duplicate concepts and allows their inventories of concepts to complement each other. Finally, to enable multilinguality, we collect the lexical realizations of the available concepts in different languages by using (a) the human-generated translations provided in Wikipedia (the so-called inter-language links), as well as (b) a machine translation system to translate occurrences of the concepts within sense-tagged corpora, namely SemCor (Miller et al., 1993) – a corpus annotated with WordNet senses – and Wikipedia itself (Section 3.3). We call the resulting set of multilingual lexicalizations of a given concept a babel synset. An overview of BabelNet is given in Figure 1 (we label vertices with English lexicalizations): unlabeled edges are obtained from links in the Wikipedia pages (e.g. BALLOON (AIRCRAFT) links to WIND), whereas labeled ones from WordNet3 (e.g. balloon1_n has-part gasbag1_n). In this paper we restrict ourselves to concepts lexicalized as nouns. Nonetheless, our methodology can be applied to all parts of speech, but in that case Wikipedia cannot be exploited, since it mainly contains nominal entities.

3 Methodology

3.1 Knowledge Resources

WordNet. The most popular lexical knowledge resource in the field of NLP is certainly WordNet, a computational lexicon of the English language. A concept in WordNet is represented as a synonym set (called synset), i.e. the set of words that share the same meaning. For instance, the concept wind is expressed by the following synset:

\[
\{ \text{wind}^1_n, \text{air current}^1_n, \text{current of air}^1_n \},
\]

where each word’s subscripts and superscripts indicate their parts of speech (e.g. n stands for noun)3.

2Throughout the paper, unless otherwise stated, we use the general term concept to denote either a concept or a named entity.

3We use in the following WordNet version 3.0. We denote with w^p_i the i-th sense of a word w with part of speech p. We use word senses to unambiguously denote the corresponding synsets (e.g. plane1_n for \{ airplane1_n, aeroplane1_n, plane1_n \}). Hereafter, we use word sense and synset interchangeably.

Figure 1: An illustrative overview of BabelNet.
and sense number, respectively. For each synset, WordNet provides a textual definition, or gloss. For example, the gloss of the above synset is: “air moving from an area of high pressure to an area of low pressure”.

Wikipedia. Our second resource, Wikipedia, is a Web-based collaborative encyclopedia. A Wikipedia page (henceforth, Wikipage) presents the knowledge about a specific concept (e.g. BAlloon (AIRCRAFT)) or named entity (e.g. MONTGolfier BROTHERS). The page typically contains hypertext linked to other relevant Wikipages. For instance, BALloon (AIRCRAFT) is linked to WIND, GAS, and so on. The title of a Wikipage (e.g. BALloon (AIRCRAFT)) is composed of the lemma of the concept defined (e.g. BALloon) plus an optional label in parentheses which specifies its meaning if the lemma is ambiguous (e.g. AIRCRAFT vs. TOY). Wikipages also provide inter-language links to their counterparts in other languages (e.g. BALloon (AIRCRAFT) links to the Spanish page AEROSTATO). Finally, some Wikipages are redirections to other pages, e.g. the Spanish BALÓN AEROSTÁTICO redirects to AEROSTATO.

3.2 Mapping Wikipedia to WordNet

The first phase of our methodology aims to establish links between Wikipages and WordNet senses. We aim to acquire a mapping \(\mu \) such that, for each Wikipage \(w \), we have:

\[
\mu(w) = \begin{cases}
 s \in Senses_{wn}(w) & \text{if a link can be established,} \\
 \epsilon & \text{otherwise},
\end{cases}
\]

where \(Senses_{wn}(w) \) is the set of senses of the lemma of \(w \) in WordNet. For example, if our mapping methodology linked BALloon (AIRCRAFT) to the corresponding WordNet sense BALloon\(_n^1\), we would have \(\mu(\text{BALloon (AIRCRAFT)}) = \text{BALloon}\(_n^1\). In order to establish a mapping between the two resources, we first identify the disambiguation contexts for Wikipages (Section 3.2.1) and WordNet senses (Section 3.2.2). Next, we intersect these contexts to perform the mapping (see Section 3.2.3).

3.2.1 Disambiguation Context of a Wikipage

Given a Wikipage \(w \), we use the following information as disambiguation context:

- **Sense labels:** e.g. given the page BALloon (AIRCRAFT), the word aircraft is added to the disambiguation context.
- **Links:** the titles’ lemmas of the pages linked from the target Wikipage (i.e., outgoing links). For instance, the links in the Wikipage BALloon (AIRCRAFT) include wind, gas, etc.
- **Categories:** Wikipages are typically classified according to one or more categories. For example, the Wikipage BALloon (AIRCRAFT) is categorized as BALLOONS, BALLOONING, etc. While many categories are very specific and do not appear in WordNet (e.g., SWEDISH WRITERS or SCIENTISTS WHO COMMITTED SUICIDE), we use their syntactic heads as disambiguation context (i.e. writer and scientist, respectively).

Given a Wikipage \(w \), we define its disambiguation context \(Ctx(w) \) as the set of words obtained from all of the three sources above.

3.2.2 Disambiguation Context of a WordNet Sense

Given a WordNet sense \(s \) and its synset \(S \), we collect the following information:

- **Synonymy:** all synonyms of \(s \) in \(S \). For instance, given the sense \(\text{airplane}\(_n^1\) \) and its corresponding synset \(\{ \text{airplane}\(_n^1,\ \text{aeroplane}\(_n^1,\ \text{plane}\(_n^1\) \} \), the words contained therein are included in the context.
- **Hypernymy/Hyponymy:** all synonyms in the synsets \(H \) such that \(H \) is either a hypernym (i.e., a generalization) or a hyponym (i.e., a specialization) of \(S \). For example, given BALloon\(_n^1\), we include the words from its hypernym \(\{ \text{lighter-than-air craft}\(_n^1\) \} \) and all its hyponyms (e.g. \{ hot-air balloon\(_n^1\) \}).
- **Sisterhood:** words from the sisters of \(S \). A sister synset \(S' \) is such that \(S \) and \(S' \) have a common direct hypernym. For example, given BALloon\(_n^1\), it can be found that \(\{ \text{balloon}\(_n^1\) \} \) and \(\{ \text{airship}\(_n^1, \text{dirigible}\(_n^1\) \} \) are sisters. Thus airship and dirigible are included in the disambiguation context of \(s \).
- **Gloss:** the set of lemmas of the content words occurring within the WordNet gloss of \(S \).

We thus define the disambiguation context \(Ctx(s) \) of sense \(s \) as the set of words obtained from all of the four sources above.

218
3.2.3 Mapping Algorithm

In order to link each Wikipedia page to a WordNet sense, we perform the following steps:

- Initially, our mapping \(\mu \) is empty, i.e. it links each Wikipage \(w \) to \(\epsilon \).
- For each Wikipage \(w \) whose lemma is monosemous both in Wikipedia and WordNet we map \(w \) to its only WordNet sense.
- For each remaining Wikipage \(w \) for which no mapping was previously found (i.e., \(\mu(w) = \epsilon \)), we assign the most likely sense to \(w \) based on the maximization of the conditional probabilities \(p(s|w) \) over the senses \(s \in \text{Senses}_{\text{WN}}(w) \) (no mapping is established if a tie occurs).

To find the mapping of a Wikipage \(w \), we need to compute the conditional probability \(p(s|w) \) of selecting the WordNet sense \(s \) given \(w \). The sense \(s \) which maximizes this probability is determined as follows:

\[
\mu(w) = \arg\max_{s \in \text{Senses}_{\text{WN}}(w)} p(s|w) = \arg\max_{s} \frac{p(s,w)}{p(w)} = \arg\max_{s} p(s,w)
\]

The latter formula is obtained by observing that \(p(w) \) does not influence our maximization, as it is a constant independent of \(s \). As a result, determining the most appropriate sense \(s \) consists of finding the sense \(s \) that maximizes the joint probability \(p(s,w) \). We estimate \(p(s,w) \) as:

\[
p(s,w) = \frac{\text{score}(s,w)}{\sum_{s' \in \text{Senses}_{\text{WN}}(w), w' \in \text{Senses}_{\text{WN}}(w)} \text{score}(s',w')},
\]

where \(\text{score}(s,w) = |\text{Ctx}(s) \cap \text{Ctx}(w)| + 1 \) (we add 1 as a smoothing factor). Thus, in our algorithm we determine the best sense \(s \) by computing the intersection of the disambiguation contexts of \(s \) and \(w \), and normalizing by the scores summed over all senses of \(w \) in Wikipedia and WordNet. More details on the mapping algorithm can be found in Ponzetto andNavigli (2010).

3.3 Translating Babel Synsets

So far we have linked English Wikipages to WordNet senses. Given a Wikipage \(w \), and provided it is mapped to a sense \(s \) (i.e., \(\mu(w) = s \)), we create a babel synset \(S \cup W \), where \(S \) is the WordNet synset to which sense \(s \) belongs, and \(W \) includes:

(i) \(w \); (ii) all its inter-language links (that is, translations of the Wikipage to other languages); (iii) the redirections to the inter-language links found in the Wikipedia of the target language. For instance, given that \(\mu(\text{BALLOON}) = \text{balloon}^1_{\text{EN}} \), the corresponding babel synset is \{ balloon\text{_EN}, Balloon\text{_DE}, aerostato\text{_ES}, balón aerostático\text{_ES}, . . . , pallone aerostatico\text{_IT} \}. However, two issues arise: first, a concept might be covered only in one of the two resources (either WordNet or Wikipedia), meaning that no link can be established (e.g., FERMI GAS or gasbag\text{_EN} in Figure 1); second, even if covered in both resources, the Wikipage for the concept might not provide any translation for the language of interest (e.g., the Catalan for BALLOON is missing in Wikipedia).

In order to address the above issues and thus guarantee high coverage for all languages we developed a methodology for translating senses in the babel synset to missing languages. Given a WordNet word sense in our babel synset of interest (e.g. balloon\text{_EN}) we collect its occurrences in SemCor (Miller et al., 1993), a corpus of more than 200,000 words annotated with WordNet senses. We do the same for Wikipages by retrieving sentences in Wikipedia with links to the Wikipage of interest. By repeating this step for each English lexicalization in a babel synset, we obtain a collection of sentences for the babel synset (see left part of Figure 1). Next, we apply state-of-the-art Machine Translation\(^4\) and translate the set of sentences in all the languages of interest. Given a specific term in the initial babel synset, we collect the set of its translations. We then identify the most frequent translation in each language and add it to the babel synset. Note that translations are sense-specific, as the context in which a term occurs is provided to the translation system.

3.4 Example

We now illustrate the execution of our methodology by way of an example. Let us focus on the Wikipage BALLOON (AIRCRAFT). The word is polysemous both in Wikipedia and WordNet. In the first phase of our methodology we aim to find a mapping \(\mu(\text{BALLOON} (\text{AIRCRAFT})) \) to an appropriate WordNet sense of the word. To

\(^4\)We use the Google Translate API. An initial prototype used a statistical machine translation system based on Moses (Koehn et al., 2007) and trained on Europarl (Koehn, 2005). However, we found such system unable to cope with many technical names, such as in the domains of sciences, literature, history, etc.
this end we construct the disambiguation context
for the Wikipage by including words from its la-
bel, links and categories (cf. Section 3.2.1). The
context thus includes, among others, the follow-
ning words: aircraft, wind, airship, lighter-than-
air. We now construct the disambiguation context
for the two WordNet senses of balloon (cf. Sec-
tion 3.2.2), namely the aircraft (#1) and the toy
(#2) senses. To do so, we include words from
their synsets, hypernyms, hyponyms, sisters, and
glosses. The context for balloon\textsubscript{a} includes: airc-
craft, craft, airship, lighter-than-air. The con-
text for balloon\textsubscript{t} includes: toy, doll, hobby. The
sense with the largest intersection is #1, so the
following mapping is established: \(\mu(\text{BALLOON}
(\text{AIRCRAFT})) = \text{balloon}\textsubscript{a} \). After the first phase,
our babel synset includes the following English
words from WordNet plus the Wikipedia inter-
language links to other languages (we report Ger-
man, Spanish and Italian): \{ balloon\textsubscript{en}, Balloon\textsubscript{de},
aerostato\textsubscript{es}, balón aerostático\textsubscript{es}, pallone aero-
statico\textsubscript{it} \}.

In the second phase (see Section 3.3), we collect
all the sentences in SemCor and Wikipedia in
which the above English word sense occurs. We
translate these sentences with the Google Trans-
late API and select the most frequent translation
in each language. As a result, we can enrich the
initial babel synset with the following words:
mongolfièrep\textsubscript{fr}, globus\textsubscript{ca}, globo\textsubscript{es}, mon-
golfiera\textsubscript{it}. Note that we had no translation for
Catalan and French in the first phase, because the
inter-language link was not available, and we also
obtain new lexicalizations for the Spanish and Ital-
ian languages.

4 Experiment 1: Mapping Evaluation

Experimental setting. We first performed an
evaluation of the quality of our mapping from
Wikipedia to WordNet. To create a gold stan-
dard for evaluation we considered all lemmas
whose senses are contained both in WordNet and
Wikipedia: the intersection between the two re-
sources contains 80,295 lemmas which corre-
stand to 105,797 WordNet senses and 199,735
Wikipedia pages. The average polysemy is 1.3
and 2.5 for WordNet senses and Wikipages, re-
spectively (2.8 and 4.7 when excluding mono-
 nous words). We then selected a random sam-
ple of 1,000 Wikipages and asked an annotator
with previous experience in lexicographic annota-
tion to provide the correct WordNet sense for each
page (an empty sense label was given, if no correct
mapping was possible). The gold-standard dataset
includes 505 non-empty mappings, i.e. Wikipages
with a corresponding WordNet sense. In order to
quantify the quality of the annotations and the dif-
culty of the task, a second annotator sense tagged
a subset of 200 pages from the original sample.
Our annotators achieved a \(\kappa \) inter-annotator agree-
ment (Carletta, 1996) of 0.9, indicating almost
perfect agreement.

Results and discussion. Table 1 summarizes the
performance of our mapping algorithm against
the manually annotated dataset. Evaluation is per-
fomed in terms of standard measures of preci-
sion, recall, and F\textsubscript{1}-measure. In addition we calcu-
late accuracy, which also takes into account empty
sense labels. As baselines we use the most fre-
fquent WordNet sense (MFS), and a random sense
assignment.

The results show that our method achieves al-
most 80% F\textsubscript{1} and it improves over the baselines by
a large margin. The final mapping contains 81,533
pairs of Wikipages and word senses they map to,
covering 55.7% of the noun senses in WordNet.
As for the baselines, the most frequent sense is
just 0.6% and 0.4% above the random baseline in
terms of F\textsubscript{1} and accuracy, respectively. A \(\chi^2 \) test
reveals in fact no statistical significant difference
at \(p < 0.05 \). This is related to the random distri-
bution of senses in our dataset and the Wikipedia
unbiased coverage of WordNet senses. So select-
ing the first WordNet sense rather than any other
sense for each target page represents a choice as
arbitrary as picking a sense at random.

5 Experiment 2: Translation Evaluation

We perform a second set of experiments concern-
ing the quality of the acquired concepts. This is as-
sessed in terms of coverage against gold-standard
resources (Section 5.1) and against a manually-
validated dataset of translations (Section 5.2).

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>R</th>
<th>F\textsubscript{1}</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapping algorithm</td>
<td>81.9</td>
<td>77.5</td>
<td>79.6</td>
<td>84.4</td>
</tr>
<tr>
<td>MFS BL</td>
<td>24.3</td>
<td>47.8</td>
<td>32.2</td>
<td>24.3</td>
</tr>
<tr>
<td>Random BL</td>
<td>23.8</td>
<td>46.8</td>
<td>31.6</td>
<td>23.9</td>
</tr>
</tbody>
</table>

Table 1: Performance of the mapping algorithm.
5.1 Automatic Evaluation

Datasets.
We compare BabelNet against gold-standard resources for 5 languages, namely: the subset of GermaNet (Lemnitzer and Kunze, 2002) included in EuroWordNet for German, MultiWordNet (Pianta et al., 2002) for Italian, the Multilingual Central Repository for Spanish and Catalan (Atserias et al., 2004), and WOrdnet Libre du Français (Benoît and Fišer, 2008, WOLF) for French. In Table 2 we report the number of synsets and word senses available in the gold-standard resources for the 5 languages.

<table>
<thead>
<tr>
<th>Language</th>
<th>Word senses</th>
<th>Synsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>15,762</td>
<td>9,877</td>
</tr>
<tr>
<td>Spanish</td>
<td>83,114</td>
<td>55,365</td>
</tr>
<tr>
<td>Catalan</td>
<td>64,171</td>
<td>40,466</td>
</tr>
<tr>
<td>Italian</td>
<td>57,255</td>
<td>32,156</td>
</tr>
<tr>
<td>French</td>
<td>44,265</td>
<td>31,742</td>
</tr>
</tbody>
</table>

Table 2: Size of the gold-standard wordnets.

Measures.
Let \(B \) be BabelNet, \(F \) our gold-standard non-English wordnet (e.g. GermaNet), and let \(E \) be the English WordNet. All the gold-standard non-English resources, as well as BabelNet, are linked to the English WordNet: given a synset \(S_F \in F \), we denote its corresponding babel synset as \(S_B \) and its synset in the English WordNet as \(S_E \). We assess the coverage of BabelNet against our gold-standard wordnets both in terms of synsets and word senses. For synsets, we calculate coverage as follows:

\[
\text{SynsetCov}(B, F) = \frac{\sum_{S_F \in F} \delta(S_B, S_F)}{|\{S_F \in F\}|},
\]

where \(\delta(S_B, S_F) = 1 \) if the two synsets \(S_B \) and \(S_F \) have a synonym in common, 0 otherwise. That is, synset coverage is determined as the percentage of synsets of \(F \) that share a term with the corresponding babel synsets. For word senses we calculate a similar measure of coverage:

\[
\text{WordCov}(B, F) = \frac{\sum_{S_F \in F} \sum_{s_f \in S_F} \delta'(s_f, S_B)}{|\{s_f \in S_F : S_F \in F\}|},
\]

where \(s_f \) is a word sense in synset \(S_F \) and \(\delta'(s_f, S_B) = 1 \) if \(s_f \in S_B \), 0 otherwise. That is we calculate the ratio of word senses in our gold-standard resource \(F \) that also occur in the corresponding synset \(S_B \) to the overall number of senses in \(F \).

However, our gold-standard resources cover only a portion of the English WordNet, whereas the overall coverage of BabelNet is much higher. We calculate extra coverage for synsets as follows:

\[
\text{SynsetExtraCov}(B, F) = \frac{\sum_{S_F \in F} \delta(S_B, S_F)}{|\{S_F \in F\}|}.
\]

Similarly, we calculate extra coverage for word senses in BabelNet corresponding to WordNet synsets not covered by the reference resource \(F \).

Results and discussion.
We evaluate the coverage and extra coverage of word senses and synsets at different stages: (a) using only the inter-language links from Wikipedia (Wiki Links); (b) and (c) using only the automatic translations of the sentences from Wikipedia (Wiki Transl.) or SemCor (WN Transl.); (d) using all available translations, i.e. BABELNET.

Coverage results are reported in Table 3. The percentage of word senses covered by BabelNet ranges from 52.9% (Italian) to 66.4 (Spanish) and 86.0% (French). Synset coverage ranges from 73.3% (Catalan) to 76.6% (Spanish) and 92.9% (French). As expected, synset coverage is higher, because a synset in the reference resource is considered to be covered if it shares at least one word with the corresponding synset in BabelNet.

Numbers for the extra coverage, which provides information about the percentage of word senses and synsets in BabelNet but not in the gold-standard resources, are given in Figure 2. The results show that we provide for all languages a high extra coverage for both word senses – between 340.1% (Catalan) and 2,298% (German) – and synsets – between 102.8% (Spanish) and 902.6% (German).

Table 3 and Figure 2 show that the best results are obtained when combining all available translations, i.e. both from Wikipedia and the machine translation system. The performance figures suffer from the errors of the mapping phase (see Section 4). Nonetheless, the results are generally high, with a peak for French, since WOLF has been created semi-automatically by combining several resources, including Wikipedia. The relatively low word sense coverage for Italian (55.4%) is, instead, due to the lack of many common words in the Italian gold-standard synsets. Examples include \text{whip}_{EN} \text{translated as staffile}_{IT} \text{but not as the more common frusta}_{IT}, \text{playboy}_{EN} \text{translated as vitaiolo}_{IT} \text{but not gigolò}_{IT}, \text{etc.}
Figure 2: Extra coverage against gold-standard wordnets: word senses (a) and synsets (b).

<table>
<thead>
<tr>
<th>Resource</th>
<th>Method</th>
<th>SENSES</th>
<th>SYNSETS</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Wiki {</td>
<td>Links</td>
<td>39.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transl.</td>
<td>42.6</td>
</tr>
<tr>
<td></td>
<td>WN</td>
<td>Transl.</td>
<td>21.0</td>
</tr>
<tr>
<td></td>
<td>BABEL.NET</td>
<td>All</td>
<td>57.6</td>
</tr>
<tr>
<td>Spanish</td>
<td>Wiki {</td>
<td>Links</td>
<td>34.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transl.</td>
<td>47.9</td>
</tr>
<tr>
<td></td>
<td>WN</td>
<td>Transl.</td>
<td>25.2</td>
</tr>
<tr>
<td></td>
<td>BABEL.NET</td>
<td>All</td>
<td>66.4</td>
</tr>
<tr>
<td>Catalan</td>
<td>Wiki {</td>
<td>Links</td>
<td>20.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transl.</td>
<td>46.9</td>
</tr>
<tr>
<td></td>
<td>WN</td>
<td>Transl.</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td>BABEL.NET</td>
<td>All</td>
<td>64.0</td>
</tr>
<tr>
<td>Italian</td>
<td>Wiki {</td>
<td>Links</td>
<td>28.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transl.</td>
<td>39.9</td>
</tr>
<tr>
<td></td>
<td>WN</td>
<td>Transl.</td>
<td>19.7</td>
</tr>
<tr>
<td></td>
<td>BABEL.NET</td>
<td>All</td>
<td>52.9</td>
</tr>
<tr>
<td>French</td>
<td>Wiki {</td>
<td>Links</td>
<td>70.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transl.</td>
<td>69.6</td>
</tr>
<tr>
<td></td>
<td>WN</td>
<td>Transl.</td>
<td>16.3</td>
</tr>
<tr>
<td></td>
<td>BABEL.NET</td>
<td>All</td>
<td>86.0</td>
</tr>
</tbody>
</table>

Table 3: Coverage against gold-standard wordnets (we report percentages).

5.2 Manual Evaluation

Experimental setup. The automatic evaluation quantifies how much of the gold-standard resources is covered by BabelNet. However, it does not say anything about the precision of the additional lexicalizations provided by BabelNet. Given that our resource has displayed a remarkably high extra coverage – ranging from 340% to 2,298% of the national wordnets (see Figure 2) – we performed a second evaluation to assess its precision. For each of our 5 languages, we selected a random set of 600 babel synsets composed as follows: 200 synsets whose senses exist in WordNet only, 200 synsets in the intersection between WordNet and Wikipedia (i.e. those mapped with our method illustrated in Section 3.2), 200 synsets whose lexicalizations exist in Wikipedia only. Therefore, our dataset included $600 \times 5 = 3,000$ babel synsets. None of the synsets was covered by any of the five reference wordnets. The babel synsets were manually validated by expert annotators who decided which senses (i.e. lexicalizations) were appropriate given the corresponding WordNet gloss and/or Wikipage.

Results and discussion. We report the results in Table 4. For each language (rows) and for each of the three regions of BabelNet (columns), we report precision (i.e. the percentage of synonyms deemed correct) and, in parentheses, the overall number of synonyms evaluated. The results show that the different regions of BabelNet contain translations of different quality: while on average translations for WordNet-only synsets have a precision around 72%, when Wikipedia comes into play the performance increases considerably (around 80% in the intersection and 95% with Wikipedia-only translations). As can be seen from the figures in parentheses, the number of translations available in the presence of Wikipedia is higher. This quantitative difference is due to our method collecting many translations from the redirections in the Wikipedia of the target language (Section 3.3), as well as to the paucity of examples in SemCor for many synsets. In addition, some of the synsets in WordNet with no Wikipedia counterpart are very difficult to translate. Examples include terms like stammel, crape fern, baseball clinic, and many others for which we could
<table>
<thead>
<tr>
<th>Language</th>
<th>WN</th>
<th>WN \cap Wiki</th>
<th>Wiki</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>73.76 (282)</td>
<td>78.37 (777)</td>
<td>97.74 (709)</td>
</tr>
<tr>
<td>Spanish</td>
<td>69.45 (275)</td>
<td>78.53 (643)</td>
<td>92.46 (703)</td>
</tr>
<tr>
<td>Catalan</td>
<td>75.58 (258)</td>
<td>82.98 (517)</td>
<td>92.71 (398)</td>
</tr>
<tr>
<td>Italian</td>
<td>72.32 (271)</td>
<td>80.83 (574)</td>
<td>99.09 (552)</td>
</tr>
<tr>
<td>French</td>
<td>67.16 (268)</td>
<td>77.43 (709)</td>
<td>96.44 (758)</td>
</tr>
</tbody>
</table>

Table 4: Precision of BabelNet on synonyms in WordNet (WN), Wikipedia (Wiki) and their intersection (WN \cap Wiki): percentage and total number of words (in parentheses) are reported.

...not find translations in major editions of bilingual dictionaries. In contrast, good translations were produced using our machine translation method when enough sentences were available. Examples are: chaudrée de poisson$_{FR}$ for fish chowder$_{EN}$, grano de café$_{ES}$ for coffee bean$_{EN}$, etc.

6 Related Work

Previous attempts to manually build multilingual resources have led to the creation of a multitude of wordnets such as EuroWordNet (Vossen, 1998), MultiWordNet (Pianta et al., 2002), BalkanNet (Tufiş et al., 2004), Arabic WordNet (Black et al., 2006), the Multilingual Central Repository (Atserias et al., 2004), bilingual electronic dictionaries such as EDR (Yokoi, 1995), and fully-fledged frameworks for the development of multilingual lexicons (Lenci et al., 2000). As it is often the case with manually assembled resources, these lexical knowledge repositories are hindered by high development costs and an insufficient coverage. This barrier has led to proposals that acquire multilingual lexicons from either parallel text (Gale and Church, 1993; Fung, 1995, *inter alia*) or monolingual corpora (Sammer and Soderland, 2007; Haghhighi et al., 2008). The disambiguation of bilingual dictionary glosses has also been proposed to create a bilingual semantic network from a machine readable dictionary (Navigli, 2009a). Recently, Etzioni et al. (2007) and Mausam et al. (2009) presented methods to produce massive multilingual translation dictionaries from Web resources such as online lexicons and Wiktionaries. However, while providing lexical resources on a very large scale for hundreds of thousands of language pairs, these do not encode semantic relations between concepts denoted by their lexical entries.

The research closest to ours is presented by de Melo and Weikum (2009), who developed a Universal WordNet (UWN) by automatically acquiring a semantic network for languages other than English. UWN is bootstrapped from WordNet and is built by collecting evidence extracted from existing wordnets, translation dictionaries, and parallel corpora. The result is a graph containing 800,000 words from over 200 languages in a hierarchically structured semantic network with over 1.5 million links from words to word senses. Our work goes one step further by (1) developing an even larger multilingual resource including both lexical semantic and encyclopedic knowledge, (2) enriching the structure of the ‘core’ semantic network (i.e. the semantic pointers from WordNet) with topical, semantically unspecified relations from the link structure of Wikipedia. This result is essentially achieved by complementing WordNet with Wikipedia, as well as by leveraging the multilingual structure of the latter. Previous attempts at linking the two resources have been proposed. These include associating Wikipedia pages with the most frequent WordNet sense (Suchanek et al., 2008), extracting domain information from Wikipedia and providing a manual mapping to WordNet concepts (Auer et al., 2007), a model based on vector spaces (Ruiz-Casado et al., 2005), a supervised approach using keyword extraction (Reiter et al., 2008), as well as automatically linking Wikipedia categories to WordNet based on structural information (Ponzetto andNavigli, 2009). In contrast to previous work, BabelNet is the first proposal that integrates the relational structure of WordNet with the semi-structured information from Wikipedia into a unified, wide-coverage, multilingual semantic network.

7 Conclusions

In this paper we have presented a novel methodology for the automatic construction of a large multilingual lexical knowledge resource. Key to our approach is the establishment of a mapping between a multilingual encyclopedic knowledge repository (Wikipedia) and a computational lexicon of English (WordNet). This integration process has several advantages. Firstly, the two resources contribute different kinds of lexical knowledge, one is concerned mostly with named entities, the other with concepts. Secondly, while Wikipedia is less structured than WordNet, it provides large
amounts of semantic relations and can be lever-
eged to enable multilinguality. Thus, even when
they overlap, the two resources provide comple-
mentary information about the same named enti-
ties or concepts. Further, we contribute a large
set of sense occurrences harvested from Wikipedia
and SemCor, a corpus that we input to a state-of-
the-art machine translation system to fill in the gap
between resource-rich languages – such as English –
and resource-poorer ones. Our hope is that the
availability of such a language-rich resource\(^5\) will
enable many non-English and multilingual NLP
applications to be developed.

Our experiments show that our fully-automated
approach produces a large-scale lexical resource
with high accuracy. The resource includes millions
of semantic relations, mainly from Wikipedia
(however, WordNet relations are labeled), and
contains almost 3 million concepts (6.7 labels per
concept on average). As pointed out in Section
5, such coverage is much wider than that of ex-
isting wordnets in non-English languages. While
BabelNet currently includes 6 languages, links to
freely-available wordnets\(^6\) can immediately be es-
ablished by utilizing the English WordNet as an
interlanguage index. Indeed, BabelNet can be ex-
tended to virtually any language of interest. In
fact, our translation method allows it to cope with
any resource-poor language.

As future work, we plan to apply our method
to other languages, including Eastern European,
Arabic, and Asian languages. We also intend to
link missing concepts in WordNet, by establish-
ing their most likely hypernyms – e.g., à la Snow
et al. (2006). We will perform a semi-automatic
validation of BabelNet, e.g. by exploiting Amaz-
on’s Mechanical Turk (Callison-Burch, 2009) or
designing a collaborative game (von Ahn, 2006)
to validate low-ranking mappings and translations.
Finally, we aim to apply BabelNet to a variety of
applications which are known to benefit from a
wide-coverage knowledge resource. We have al-
ready shown that the English-only subset of Ba-
belNet allows simple knowledge-based algorithms
to compete with supervised systems in standard
coarse-grained and domain-specific WSD settings
(Ponzetto andNavigli, 2010). We plan in the near
future to apply BabelNet to the challenging task of
cross-lingual WSD (Lefever and Hoste, 2009).

\(^5\)BabelNet can be freely downloaded for research pur-
poses at \texttt{http://lcl.uniroma1.it/babelnet}.

\(^6\)\texttt{http://www.globalwordnet.org}.

\section*{References}

Jordi Atserias, Luis Villarejo, German Rigau, Eneko
Agirre, John Carroll, Bernardo Magnini, and Piek
Vossen. 2004. The MEANING multilingual central

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary Ive.
In \textit{Proceedings of 6th International Semantic Web
Conference joint with 2nd Asian Semantic Web
Conference (ISWC+ASWC 2007)}, pages 722–735.

Sagot Benoît and Darja Fîsher. 2008. Building a free
French WordNet from multilingual resources. In
\textit{Proceedings of the Ontolex 2008 Workshop}.

William Black, Sabri Elkateb Horacio Rodriguez,
Musa Alkhaliﬁa, Piek Vossen, and Adam Pease.
2006. Introducing the Arabic WordNet project.

Razvan Bunescu and Marius Paşca. 2006. Using
cyclopedic knowledge for named entity disambuga-

Chris Callison-Burch. 2009. Fast, cheap, and creative:
Evaluating translation quality using Amazon’s Me-
295.

Jean Carletta. 1996. Assessing agreement on classi-
fication tasks: The kappa statistic. \textit{Computational

Montse Cuadros and German Rigau. 2006. Quality
assessment of large scale knowledge resources. In

Gérard de Melo and Gerhard Weikum. 2009. Towards
a universal wordnet by learning from combined evi-

Oren Etzioni, Kobi Reiter, Stephen Soderland, and
Marcusamber. 2007. Lexical translation with ap-
plication to image search on the Web. In \textit{Pro-
cedings of Machine Translation Summit XI}.

Christiane Fellbaum, editor. 1998. \textit{WordNet: An Elec-
tronic Database}. MIT Press, Cambridge, MA.

Pascale Fung. 1995. A pattern matching method
for finding noun and proper noun translations from
noisy parallel corpora. In \textit{Proc. of ACL-95}, pages
236–243.

Overcoming the brittleness bottleneck using
Wikipedia: Enhancing text categorization with
cyclopedic knowledge. In \textit{Proc. of AAAI-06},
pages 1301–1306.

William A. Gale and Kenneth W. Church. 1993. A
program for aligning sentences in bilingual corpora.

Jim Giles. 2005. Internet encyclopedias go head to

Aria Haghighi, Percy Liang, Taylor Berg-Kirkpatrick,
and Dan Klein. 2008. Learning bilingual lexicons
from monolingual corpora. In \textit{Proc. of ACL-08},
pages 771–779.

text continues...