A New Method for the Study of Correlations between MT Evaluation Metrics

Paula Estrella
Andrei Popescu-Belis
Margaret King

School of Translation and Interpreting
University of Geneva
Introduction

- Correlation with human metrics is a desirable property of automatic metrics
 - Typically adequacy and fluency

- Results are difficult to compare across studies
 - Diversity of results
 - “BLEU correlates 95% with humans” (Papineni et al. 2002)
 - vs. “BLEU does not correlate well” (Koehn et al. 2006)

- What factors affect correlation coefficients?
 - Compare two situations: texts from different domains and MT qualities (high vs. low quality)
Plan

- Proposal for computing correlation
- Resources
- General domain
- Specific domain
- High/low translation quality
- Conclusion
Plan

- Proposal for computing correlation
- Resources
- General domain
- Specific domain
- High/low translation quality
- Conclusion
Computing correlation of metrics

- Usually calculated cross-system
 - Final scores of every evaluated system are correlated with fluency or with adequacy scores
 - Small number of sample points
 - Global result for an evaluation

- Our approach: compute a form of correlation for each system
 - Use bootstrapping to generate a large number of sample points
 - Artificially generate several samples for each system
 - Hypothesis
 - Correlation should be visible independently of the system, test set, etc

- Why did we choose this approach?
 - Useful if few systems are tested, unlike other forms of correlation
 - Results can be obtained separately for each system
Bootstrapping algorithm

- Statistical method to infer estimators of a variable
 - in MT used for statistical significance tests (Koehn 2004); in ASR to estimate c.i. (Bisani & Ney 2004)

- Advantages
 - Applicable to one (or more) system(s)
 - Individual results for each system

- Disadvantage
 - Direct comparison with standard correlation not possible
Bootstrapping algorithm (II)

- **Given a corpus (set of texts) with N segments**
 1. Generate a new corpus with N segments randomly selected
 - Segments can appear 0 or more times
 2. Apply metrics on the new (= artificial, bootstrapped) corpus
 3. Repeat 1,500 times
 4. Calculate correlation over 1,500 scores

- **For consistency of Pearson’s R coefficients**
 - Metrics applied at system level
 - Random numbers fixed for all metrics

- **Output:** correlation matrixes per system, for any pair of evaluation metrics
Plan

- Proposal for computing correlation
- Resources
 - General domain
 - Specific domain
 - High/low translation quality
- Conclusion
Resources used

- Corpus from the CESTA MTeval campaign
 - 5 systems translating EN → FR

- 1st run: \textbf{general domain} texts from the \textit{Official Journal of the European Communities}
 - 790 segments, ~25 words/segment on average

- 2nd run: systems could adapt to the \textbf{health domain}
 - 288 segments, ~22 words/segment on average
Evaluation metrics

- **Human evaluation metrics**
 - Fluency and adequacy, average of 2 evaluators
 - 5-point scale, normalized to [0; 1] interval
 - Agreement on 1st run
 - for identical values: fluency 40% | adequacy 37%
 - for 0-1 point difference: fluency 84% | adequacy 78%
 - Agreement on 2nd run
 - for identical values: fluency 41% | adequacy 47%
 - for 0-1 point difference: fluency 84% | adequacy 78%

- **Automatic evaluation metrics**
 - BLEU, NIST, mWER, mPER, GTM
 - Acceptable cross-system correlations reported by CESTA
 - BLEU/NIST vs. adequacy ≈ 0.63
 - BLEU/NIST vs. fluency ≈ 0.69
Plan

- Proposal for computing correlation
- Resources
- General domain
- Specific domain
- High/low translation quality
- Conclusion
Texts from general domain

- Correlation calculated on texts from the CESTA “general domain”

- General results
 - Relatively high R correlation for metrics of the same family
 - WER vs. PER > 0.8, BLEU vs. NIST > 0.7, PREC vs. REC > 0.76
 - No particular trend between different automatic metrics
 - WER/PER vs. BLEU/NIST decrease as system ranking decreases
 - Correlations with human metrics
 - 0.2–0.35 for systems ranked highest or lowest
 - 0.3–0.5 for systems ranked in the middle
 - 0.67–0.71 for adequacy vs. fluency
 - NIST has overall lowest correlation scores

- NB: CESTA reports only on adequacy/fluency correlation → values are not directly comparable
Plan

- Proposal for computing correlation
- Resources
- General domain
- Specific domain
- High/low translation quality
- Conclusion
Texts from specific domain (health)

- Previously found some low values
 - Specially with human metrics
 - Depends on the system

- Performed experiment on a corpus from a specific domain
 - CESTA corpus for health domain – 288 segments
 - Hypothesis: correlations should improve since systems were specially adapted

- Comparison to previous results
 - NB: slight change in evaluation protocol for humans
 - Majority of systems participating in both campaigns
Results (1/2)

- Values do not change a lot for specific domain
 - Decreased for correlations of adequacy vs. fluency
 - E.g. adequacy vs. fluency 0.26–0.4 (was 0.6–0.7)
 - Influenced by the change of human evaluation protocol?

- Similar values between automatic metrics

- Special case of system increasing correlations
 - All metrics with adequacy 0.5 – 0.7 but between 0.2 – 0.35 with fluency
 - Only system with better R with adequacy than fluency
Results (2/2)

<table>
<thead>
<tr>
<th></th>
<th>WER</th>
<th>BLEU</th>
<th>NIST</th>
<th>ADE</th>
<th>FLU</th>
<th>GTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>WER</td>
<td></td>
<td>-0.82</td>
<td>-0.69</td>
<td>-0.20</td>
<td>-0.28</td>
<td>-0.51</td>
</tr>
<tr>
<td>BLEU</td>
<td>-0.87</td>
<td></td>
<td>0.80</td>
<td>0.17</td>
<td>0.21</td>
<td>0.66</td>
</tr>
<tr>
<td>NIST</td>
<td>-0.72</td>
<td>0.84</td>
<td></td>
<td>0.21</td>
<td>0.21</td>
<td>0.80</td>
</tr>
<tr>
<td>ADE</td>
<td>-0.72</td>
<td>0.68</td>
<td>0.51</td>
<td></td>
<td>0.34</td>
<td>0.16</td>
</tr>
<tr>
<td>FLU</td>
<td>-0.27</td>
<td>0.35</td>
<td>0.24</td>
<td>0.27</td>
<td></td>
<td>0.15</td>
</tr>
<tr>
<td>GTM</td>
<td>-0.89</td>
<td>0.71</td>
<td>0.62</td>
<td>0.62</td>
<td>0.24</td>
<td></td>
</tr>
</tbody>
</table>

The table above shows the correlation coefficients between different metrics for S2 and S5.
Plan

- Proposal for computing correlation
- Resources
- General domain
- Specific domain
- High/low translation quality
- Conclusion
High vs. low quality translations

- Explore correlation over “good” or “bad” translations
 - Translation quality measured by adequacy/fluency scores
 - Hypothesis: high quality translations should be easier to evaluate → better correlation?

- Empirical threshold for low, respectively high scores
 - Adequacy and fluency > 0.85 and respectively < 0.15

- Analysis performed on output of 2 systems, S2 & S5
 - Extracted 130 low quality segments and 180 high quality segments
Results (1/2)

- S5 outperforms S2 for all metrics on low quality segments
- S2 much better on high quality segments for all metrics applied
- Correlation between adequacy and fluency increases for high quality segments
- Independently of translation quality
 - S2 scores correlate better with fluency
 - S5 with adequacy
 - NIST shows lowest coefficients
 - Correlation still very low despite high inter-judge agreement
Results (2/2)

<table>
<thead>
<tr>
<th></th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S2</td>
<td>S5</td>
</tr>
<tr>
<td>GTM vs. Ade</td>
<td>0.24</td>
<td>0.11</td>
</tr>
<tr>
<td>GTM vs. Flu</td>
<td>0.41</td>
<td>0.27</td>
</tr>
<tr>
<td>WER vs. Ade</td>
<td>-0.36</td>
<td>-0.17</td>
</tr>
<tr>
<td>WER vs. Flu</td>
<td>-0.43</td>
<td>-0.25</td>
</tr>
<tr>
<td>BLEU vs. Ade</td>
<td>0.28</td>
<td>0.14</td>
</tr>
<tr>
<td>BLEU vs. Flu</td>
<td>0.40</td>
<td>0.29</td>
</tr>
</tbody>
</table>

- Correlation values for high/low quality segments for S2 and S5.
Plan

- Proposal for computing correlation
- Resources
- General domain
- Specific domain
- High/low translation quality
- Conclusion
Conclusions

- Low correlation of human vs. automatic metrics
 - Despite high inter-judge agreement
- Stronger correlations remain so regardless of the amount of text used
 - High correlation between automatic metrics of the same family
 - Some acceptable cross-correlations: WER/BLEU, NIST/Prec
- Low quality translations might be more difficult to evaluate
 - They lead to a larger variation of scores
- Coefficients vary depending on system
 - Maybe related to translation algorithms used by systems
 - Could be misleading to present cross-system correlations
Future work

- This work raised even more questions
 - How do we interpret correlations?
 - To what extent should automatic and human metrics correlate?

- We need to further investigate correlation
 - Check our procedure and results
 - Ideally try other setups for human evaluation \(\rightarrow \) costly

- Try metrics that are not n-gram/distance based
 - e.g. METEOR
Thanks for your attention!

Any questions?