Smoothing and Data Selection in Large SMT Systems

Holger Schwenk

LIUM, University of Le Mans, France

Holger.Schwenk@lium.univ-lemans.fr

May 14, 2008
Plan

- Introduction and motivation
- NIST task
- Baseline architecture
- Data selection/emphasizing
 - language modeling
 - translation models
- Smoothing techniques
 - language modeling
- Perspectives
Statistical Machine Translation

- All knowledge is automatically extracted from representative data:
 - bitexts: existing human supplied translations (100k–200M)
 - monolingual data: used for the LM, usually journals or WEB data (10M–10G)
- Estimate probability distributions from this data:
 - phrase table with various scores
 - n-gram language model
Probability estimation

- Relative frequency
 - high variance, low bias
 - overestimation of rare events
 - no generalization to unseen events

- Some kind of smoothing is needed
 - common practice in language modeling
 - but not (yet) frequently used for the translation model
 - some work has shown possible improvements for instance [Foster et al, EMNLP’06]
Introduction

Data selection/emphasizing

- Data often comes from a large variety of sources
 - in- versus out-of-domain
 - old versus recent sources
 - high quality human versus approximate translations
 - ...

- Large variations in size
- It seems suboptimal to mix all these data sources and to use them uniformly

⇒ How to weight the data sources in function of their relevance to the task?
NIST Open MT evaluation

- yearly evaluations performed by NIST since 2001
- focus on translation from Mandarin and Arabic to English
- large amounts of training data available:
 - 175M words of bitexts and 3.5G of newspaper texts
 - considerable computational resources are needed
 - approaches that achieved improvements on smaller task may not help anymore or be too expensive to apply
- carefully selected test data with four high quality human translations

⇒ NIST evaluations have played a key role to advance the field by providing a common test bed and infrastructure to compare the most promising approaches
Bitexts

- Various small corpora (9.1M words)
- Development data from previous evaluations (2M words)
- ISI automatically aligned data (35M words)
- UN corpus (130M words)

⇒ phrase-table with 228M entries (6.2G gzipped)

Monolingual data

- English part of bitexts (175M words)
- Gigaword corpus of newspaper texts (3.2G words)
- Parts of Google n-grams (139M out of 1T n-grams)

⇒ 4-gram back-off LM with 264M 4-grams, file size of 5.5GB
System Architecture

Design decisions of the system

- Pure statistical system without usage of linguistic knowledge (yet)
- Validate system architecture and algorithms that did work well on small (IWSLT) and medium sized tasks (Europarl)
- Build a state-of-the-art system based on open-source
- Single system without system combination
- Careful use of available data
 - do we need quality or quantity?
 - reasonably compact representation of the data
System Architecture Overview

- Parallel corpus
- Monolingual corpus
- Phrase extraction
- SRILM
- CSLM
- Phrase table
- 4g LM
- 5g CSLM
- Moses
- 1000 bests
- LM rescoring
- Trg
- Condor
- BLEU

only 14 feature functions
- translation model (4)
- lex. reordering (7)
- LM (1)
- penalties (2)

decode optimized with MERT

2nd pass optimization
Data Selection in the LM

Data selection

- Merge all data and build one LM
 → important but small data is outvoted by large corpora
- LM combination:
 + select common word list
 + train individual LM on each subcorpus
 + linear combination:
 \[
 P_{LM}(w_3|w_1w_2) = \sum_i \lambda_i P_{LM_i}(w_3|w_1w_2)
 \]
- log-linear: each LM is a feature function among others
 \[
 P = \sum_j \log P_j + \sum_i \lambda_i \log P_{LM_i}(w_3|w_1w_2)
 \]
Data Selection in the LM

Theoretical comparison

<table>
<thead>
<tr>
<th>Probabilities:</th>
<th>linear</th>
<th>log-linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>criterion:</td>
<td>added</td>
<td>multiplied</td>
</tr>
<tr>
<td>optimisation:</td>
<td>perplexity</td>
<td>BLEU</td>
</tr>
<tr>
<td># of models:</td>
<td>can be merged</td>
<td>numerical</td>
</tr>
</tbody>
</table>

- added
- multiplied
- optimisation: perplexity
- EM
- # of models: can be merged into one
- as much as submodels
Data Selection in the LM

Experimental comparison

• Combining europarl and news-commentary LMs:

![Graph showing perplexity and BLEU scores against interpolation coefficient.](image)

• Experimental comparison is not always clear
• Linear combination is usually as good and much easier to realize
Data Selection in the LM

Example: NIST task

- bitexts: 175M
 - Gale translations (1.1M words)
 - development data from previous years (0.9M words)
 - various news wire data (8.1M words)
 - automatically extracted parallel texts from ISI (35M words)
 - UN data (130M words)
- Gigaword newspaper corpus: 3.4G
 - divided into 7 subsets to keep estimation tractable
- Google n-grams: 1T
 - selected subset of 139M 4-grams

⇒ total of 12 submodels
Data Selection in the LM

Result summary

<table>
<thead>
<tr>
<th>corpus</th>
<th>train #words</th>
<th>LM size</th>
<th>Px dev06 all</th>
<th>Nwire</th>
<th>WEB</th>
</tr>
</thead>
<tbody>
<tr>
<td>bitexts pooled</td>
<td>175M</td>
<td>666M</td>
<td>189.3</td>
<td>145.7</td>
<td>351.3</td>
</tr>
<tr>
<td>idem w/o UN</td>
<td>45M</td>
<td>278M</td>
<td>183.0</td>
<td>140.2</td>
<td>343.7</td>
</tr>
<tr>
<td>bitexts ipol</td>
<td>175M</td>
<td>309M</td>
<td>161.7</td>
<td>131.0</td>
<td>266.2</td>
</tr>
<tr>
<td>+ GigaWord</td>
<td>3.4G</td>
<td>3.7G</td>
<td>128.1</td>
<td>104.7</td>
<td>206.5</td>
</tr>
<tr>
<td>+ Google</td>
<td>(1T)</td>
<td>5.5G</td>
<td>114.5</td>
<td>99.0</td>
<td>161.7</td>
</tr>
</tbody>
</table>

- Pooled LM is better without the UN data!
- It’s very important to consider the heterogeneous data in the bitexts, in particular for the WEB part
- Google n-grams achieve decrease of 11%, mainly on WEB
Data Selection in the TM

How to account for the heterogeneous data?

- multiple phrase tables
- linear interpolation of separately trained phrase tables
- some kind of discriminative training
Data Selection in the TM

Multiple phrase tables

- build a phrase table per source and provide multiple tables to Moses
- log-linear combination
- MERT training should weight correctly the different models
- but each table provides 5 scores
 → high dimensional optimisation problem
 (even worse when we also consider lexical reordering)
 - Unrealistic for more than three models
- alignments risk to be suboptimal for small corpora
- contradictory experimental results
Data Selection in the TM

Linear interpolation of separately trained phrase tables

- motivated by the procedure used for LMs
- how to judge the quality of a phrase-table without running a full system (something equivalent to perplexity)?
- how to estimate the coefficients?
- merging into one phrase table is not obvious
- alignments risk to be suboptimal for small corpora

⇒ often only one phrase table is estimated on the pooled data
Data Selection in the TM

ISI automatically extracted parallel data

- found pseudo parallel data in the English and Arabic Gigaword corpus
- algorithm [Munteanu & Marcu, CL 2005]:
 - consider time window, word dictionary, IBM1 alignments, max entropy classifier, ...
- 1.1M sentences were extracted (35M words)
- confidence scores are provided
Data Selection in the TM

How to best use the ISI automatically aligned bitexts?

- Keep only sentences with a confidence score superior to a threshold
- Initial experiments with Gale manual translations only:

⇒ Gain of 2 points BLEU when not all ISI data is used
Data Selection in the TM

Result summary (LM trained on all bitexts + Gigaword)

<table>
<thead>
<tr>
<th>Bitext</th>
<th>#words</th>
<th>Dev06</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gale+nw</td>
<td>9M</td>
<td>43.02</td>
</tr>
<tr>
<td>Gale+nw+ISI</td>
<td>35M</td>
<td>45.09</td>
</tr>
<tr>
<td>Gale+nw+ISI+dev</td>
<td>36M</td>
<td>45.38</td>
</tr>
<tr>
<td>Gale+nw+ISI+dev+un</td>
<td>165M</td>
<td>45.98</td>
</tr>
</tbody>
</table>

- Filtered ISI automatic texts are pretty useful
- Adding old Dev data gives 0.3 improvement
 → Pretty good result with core bitexts of 36M words only
- Only +0.6 BLEU with 129M words of UN data
 → High quality in-domain data seems to be more important than large amounts of general data
Continuous Space LM

Theoretical drawbacks of back-off LM:

- Words are represented in a high-dimensional discrete space
- Probability distributions are not smooth functions
- Any change of the word indices can result in an arbitrary change of LM probability

⇒ True generalization is difficult to obtain

Main idea [Bengio, NIPS’01]:

- Project word indices onto a continuous space and use a probability estimator operating on this space
- Probability functions are smooth functions and better generalization can be expected
CSLM - Probability Calculation

- Outputs = LM posterior probabilities of all words:
 \[P(w_j = i | h_j) \quad \forall i \in [1, N] \]
- Context \(h_j \) = sequence of \(n-1 \) points in this space

\[
\begin{align*}
\text{Outputs} &= \text{LM posterior probabilities of all words:} \\
&= P(w_j = i | h_j) \quad \forall i \in [1, N] \\
\text{Context} \ h_j &= \text{sequence of} \ n-1 \text{ points in this space}
\end{align*}
\]
CSLM - Training

- Backprop training, cross-entropy error
 \[E = \sum_{i=1}^{N} d_i \log p_i \]
 + weight decay
 \[\Rightarrow \text{NN minimizes perplexity on training data} \]
- continuous word codes are also learned (random initialization)
Continuous Space LM

Some details (Computer Speech and Language, pp 492–518, 2007)

- Projection and estimation is done with a multi-layer neural network
- Still an \(n\)-gram approach
- But LM probability for any \(n\)-gram can be calculated without backing off
- Usually trained on the same data than the back-off LM using a resampling algorithm
- Efficient implementation is very important
- Used in second pass as an additional feature function
- Quite succesful in several tasks and languages
CSLM - Training

Training Procedure

- Same training data than back-off LM (bibtexts + Giga)
- Resample algorithm (HLT/EMNLP’05 paper)
- Shortlist of length 8k
- Trained several networks with different context sizes
- Interpolated with 4-gram back-off LM

Incorporation into MT System

- n-best list rescoring
- Feature function coefficients are again optimized
Result summary - perplexities

<table>
<thead>
<tr>
<th>corpus</th>
<th>train #words</th>
<th>LM size</th>
<th>Px dev06 all</th>
<th>Px dev06 Nwire</th>
<th>Px dev06 WEB</th>
</tr>
</thead>
<tbody>
<tr>
<td>bitexts pooled</td>
<td>175M</td>
<td>666M</td>
<td>189.3</td>
<td>145.7</td>
<td>351.3</td>
</tr>
<tr>
<td>idem w/o UN</td>
<td>45M</td>
<td>278M</td>
<td>183.0</td>
<td>140.2</td>
<td>343.7</td>
</tr>
<tr>
<td>bitexts ipol</td>
<td>175M</td>
<td>309M</td>
<td>161.7</td>
<td>131.0</td>
<td>266.2</td>
</tr>
<tr>
<td>+ GigaWord</td>
<td>3.4G</td>
<td>3.7G</td>
<td>128.1</td>
<td>104.7</td>
<td>206.5</td>
</tr>
<tr>
<td>+ Google</td>
<td>(1T)</td>
<td>5.5G</td>
<td>114.5</td>
<td>99.0</td>
<td>161.7</td>
</tr>
<tr>
<td>+ CSLM</td>
<td>3.4G</td>
<td>+1G</td>
<td>98.3</td>
<td>85.3</td>
<td>137.4</td>
</tr>
</tbody>
</table>

- It seems to be very important to consider the heterogeneous data in the bitexts, in particular for the WEB part
- Google n-grams achieve decrease of 11%, mainly on WEB
- CSLM gives 14% improvement on top of this large LM
Smothing and Data Selection in Large SMT Systems

H. Schwenk

Introduction
Task
Architecture Overview
Data selection
LM
TM
CSLM
Architecture Results
Conclusions

Result summary - BLEU scores

<table>
<thead>
<tr>
<th>System</th>
<th>All</th>
<th>Dev06</th>
<th>Eval08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>43.99</td>
<td>46.84</td>
<td>34.51</td>
</tr>
<tr>
<td>beam tuning</td>
<td>44.40</td>
<td>47.27</td>
<td>34.90</td>
</tr>
<tr>
<td>+ Google LM</td>
<td>44.70</td>
<td>47.22</td>
<td>36.11</td>
</tr>
<tr>
<td>+ CSLM</td>
<td>45.96</td>
<td>48.56</td>
<td>36.69</td>
</tr>
<tr>
<td>Dev06</td>
<td></td>
<td></td>
<td>41.69</td>
</tr>
<tr>
<td>Eval08</td>
<td></td>
<td></td>
<td>42.13</td>
</tr>
<tr>
<td>All</td>
<td></td>
<td></td>
<td>41.90</td>
</tr>
<tr>
<td>All</td>
<td></td>
<td></td>
<td>42.98</td>
</tr>
</tbody>
</table>

- Tuning of beam affects both subsets
- Filtered Google LM mainly improves BLEU on WEB data
- CSLM gives overall improvement of 1.1 BLEU on test data on top of the completely tuned system
Conclusion and Perspectives

Conclusion

- Data selection/emphasizing is very important
- There is a common practice for LM:
 - train individual models,
 - optimize perplexity with EM procedure
 - linear interpolation + merge into one model
 → apply this procedure consequently
- but there is no satisfactory straight-forward procedure for the translation model
⇒ Research in this direction is needed
Conclusion and Perspectives

Conclusion

- Automatically aligned data can be very helpful
- But it must be carefully selected
- Using too much can actually hurt

⇒ Continue to explore the usage of “found bitext”

- Nice result with CSLM: careful smoothing and good generalisation is important even with large amounts of training data

⇒ Can we do something similar with the translation model?
Conclusion and Perspectives

Perspectives

- Phrase-based translation models are still too simple:
 - data emphasizing is difficult
 - no smoothing
 - bad generalization to unseen phrases (singular \rightarrow plural)

- Possible research directions
 - factored representations of translation and language model
 - continuous space translation model
 - discriminative approaches