Problems of Deep Syntactic English-to-Czech MT

Ondřej Bojar
bojar@ufal.mff.cuni.cz
Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics
Charles University, Prague

May 15, 2008
Outline

• Motivation for deep syntax.
• Tree-to-tree transfer using Synchronous Tree-Substitution Grammars.
• Methods of back-off.
• Empirical evaluation.
• Sources of errors.
Overview: Deep Syntactic Machine Translation

Interlingua

Tectogrammatical (t-) Layer

Analytical (a-) Layer

Morphological (m-) Layer

--- English ---

--- Czech ---

May 15, 2008

Problems of Deep Syntactic English-to-Czech MT
Tectogrammatics: Deep Syntax Culminating

Background: Prague Linguistic Circle (since 1926).

Materialized theory — Treebanks:

- Czech: PDT 1.0 (2001), PDT 2.0 (2006)
- Czech-English: PCEDT 1.0 (2004), PCEDT 2.0 (in progress)

Practice — Tools:

- parsing Czech to surface: McDonald et al. (2005)
- parsing Czech to deep: Klimeš (2006)
- parsing English to surface: well studied (+rules convert to dependency trees)
- parsing English to deep: heuristic rules (manual annotation in progress)
- generating Czech surface from t-layer: Ptáček and Žabokrtský (2006)
Analytical vs. Tectogrammatical

- hide auxiliary words, add nodes for "deleted" participants
- resolve e.g. active/passive voice, analytical verbs etc.
- "full" tecto resolves much more, e.g. topic-focus articulation or anaphora
#45 This should be changed .

May 15, 2008 Problems of Deep Syntactic English-to-Czech MT
Czech and English Tectogrammatical

Predicate-argument structure: \(\text{change}_{\text{should}}(\text{ACT: someone, PAT: it}) \)
The Tectogrammatical Hope

Transfer at t-layer should be easier than direct translation:

• Reduced structure size (auxiliary words disappear).
• Long-distance dependencies (non-projectivites) solved at t-layer.
• Word order ignored / interpreted as information structure (given/new).
• Reduced vocabulary size (Czech morphological complexity).
• Czech and English t-trees structurally more similar
 ⇒ less parallel data might be sufficient (but more monolingual).
• Ready for fancy t-layer features: co-reference.

The complications:

• 47 pages documenting data format (PML, XML-based, sort of typed)
• 1200 pages documenting Czech t-structures
 “Not necessary” once you have a t-tree but useful understand or to blame the right people.
Idea: Observe a Pair of Dependency Trees

The association said domestic demand grew in September.

Asociace uvedla, že domácí poptávka v září stoupl.

May 15, 2008
Problems of Deep Syntactic English-to-Czech MT
Idea: Decompose Trees into Treelets

Asociace uvedla, že domácí poptávka v září stoupla.

The association said domestic demand grew in September.
Idea: Collect Dictionary of Treelet Pairs

\[\text{Pred}_{cs} = \text{Pred}_{en} \]

\[\text{Sb}_{cs} \quad \text{uvedla} \quad , \quad \text{že} \quad \text{Pred}_{cs} \quad = \quad \text{Sb}_{en} \quad \text{said} \quad \text{Pred}_{en} \]

\[\text{Adj}_{cs} \quad \text{poptávka} \quad = \quad \text{Adj}_{en} \quad \text{demand} \]

\[\text{asociace} = \text{The association} \]

\[\ldots \text{Synchronous Tree Substitution Grammar}, \text{ e.g. Čmejrek (2006)} \ldots \]
Decoding STSG

Given an input dependency tree:

- decompose it into known treelets,
- replace treelets by their treelet translations,
- join output treelets and produce output final tree; linearize or generate plaintext.

Implemented as two-step top-down beam-search similar to Moses:

1. Prepare **translation options table**:
 - For every source node consider every subtree rooted at that node.
 - If the subtree matches the source treelet in a treelet pair, we’ve got a translation option.
 - Keep only best τ translation options at a node.

2. Gradually **expand partial hypotheses**:
 - Starting at root use translation options to cover source tree.
 - Keep only best σ partial hypotheses of a given size (input nodes covered).
The association said demand grew.

Sample translation options at root:

\[\text{VP} \Rightarrow \text{Pred} \]
\[\Rightarrow \text{AuxK} \]
\[\Rightarrow \text{Pred} \]

Sample translation options at 'said':

\[\text{NP} \Rightarrow \text{VP} \]
\[\Rightarrow \text{Sb uvedla, že } \text{Pred} \]

Sample translation options at '.':

\[\Rightarrow . \]
Hypothesis Expansion Example

Sample Derivation:

\[h_0 \Rightarrow \# \]

\[h_1 \Rightarrow \# \]

\[h_2 \Rightarrow \# _{\text{VP}} \]

\[h_3 \Rightarrow \# _{\text{NP}} _{\text{VP}} \]

Linearized output:

\[\Rightarrow _\# \]

\[\Rightarrow \# _\text{Pred} \]

\[\Rightarrow \# _{\text{Sb uvedla , že}} _\text{Pred} \]

\[\Rightarrow \# _{\text{Sb uvedla , že}} _{\text{Sb stoupla .}} \]
Treelet Alignments: Heuristics

- Similar to common phrase-extraction techniques given word alignments.
- Basic units are little trees instead of word spans.

1. Parse both sides of the parallel corpus.

2. Obtain **node-to-node alignments** (GIZA++ on linearized trees).

3. Extract all treelet pairs satisfying these conditions:
 - no more than i internal nodes and f frontier nodes,
 - compatible with node alignment,
 e.g. no node-alignment link leads outside the treelet pair and frontiers are linked.
 - satisfying **STSG property**:
 All children of an internal node have to be included in the treelet (as frontiers or internals),
 ie. assume no adjunction operation was necessary to construct the full tree.

4. Estimate probabilities, e.g. $p(t_1, t_2 | rootstate_1, rootstate_2)$

 Another option is an EM-loop by Eisner (2003).
In Reality, t-nodes are not Atomic!

t-nodes have about 25 attributes: t-lemma, functor, gender, person, tense, iterativeness, dispositional modality, . . .

Upper Bound on MT Quality via t-layer:

- Analyse Czech sentences to t-layer.
- Optionally ignore some node attributes.
- Generate Czech surface.
- Evaluate BLEU against input Czech sentences.

![Diagram showing the flow of translation from English to Czech through Interlingua.]

- Full automatic t-layer, no attributes ignored: 36.6±1.2
- Ignore sentence mood (assume indicative): 36.6±1.2
- Ignore verbal fine-grained info (resultativeness, . . .): 36.6±1.2
- Ignore verbal tense, aspect, . . .: 24.9±1.1
- Ignore all grammatical attributes: 5.3±0.5

⇒ Node attributes obviously very important.

May 15, 2008 Problems of Deep Syntactic English-to-Czech MT
No More Fairy Tales on Vocabulary Reduction

Can we find a balance of small vocabulary and high achievable BLEU?

Upper bound on translation via t-layer (analyze+generate Czech)

Full t-node

(cased) word forms entropy: 10.74

Space for improvement assuming:

- t-nodes atomic (with a restricted set of attributes)
- we wish to stay below the entropy of plain text

⇒ Very limited achievable BLEU even if transfer were absolutely perfect.
Consequence: Need for Factored Translation

- t-layer by itself *increases* complexity of node label choice.
 ⇒ cannot treat output nodes labels as atomic: go.V.past.third.sg...

The bare minimum:
- two factors to translate lexical item and grammatical features separately
- check for internal output compatibility (using more monolingual data)

<table>
<thead>
<tr>
<th>English</th>
<th>Czech</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-lemma</td>
<td>t-lemma</td>
</tr>
<tr>
<td>other attributes</td>
<td>other attributes</td>
</tr>
</tbody>
</table>

Conflicting with the key concept of STSG: treelet shape (and size) alternations.

Current implementation is “synchronous”, as in Moses:
- translation options fully specify all output factors.
Treelet Construction 1: Preserve Everything

- Most basic method (no back-off).
- Preserves:
 - shapes of treelets, ordering of nodes,
 - all factors (attributes) of internal nodes,
 - position and states of frontier nodes.
Construction 2: Ignore Input Factors

- Back-off by ignoring some of input factors \Rightarrow reduced source data sparseness.
- Output factors fully specified (i.e. their values guessed).

May 15, 2008
Problems of Deep Syntactic English-to-Czech MT
3: Translate Internals, Generate Frontiers

- We preserve: treelet shape, all factors of internal nodes.
- In training, frontier nodes are ignored (dropped).
- In translation, frontier nodes are translated and positioned one-by-one.
 - Available only when producing linearized output (no need to reconstruct the structure).
 - Frontiers are placed before or after internal nodes, not in between.

May 15, 2008 Problems of Deep Syntactic English-to-Czech MT
4: Translate Node-by-node

- Like (3), but treelets limited to one internal only.
 ⇒ trivial to reconstruct treelet structure.
- Frontiers ignored in training, and translated one-by-one.
 – Ordering preserved for the sake of simplicity.
- If used alone, the source and target trees will have equal number of nodes:
 ⇒ Not suitable for transfer at a-layer.
5: Factored Translation (node-by-node)

- Analogous to factored phrase-based translation (Koehn and Hoang, 2007).
- The configuration specifies a sequence of steps:
 - **Mapping steps** convert input factors to output factors.
 - **Generation steps** bind values of output factors.
 - The order of steps is important due to the limited stack of partial hypotheses.
- Currently limited to node-to-node translation to avoid conflicting structures.

uvedla \(\rightarrow\) said
uvést \(\rightarrow\) say
verb \(\rightarrow\) verb
past \(\rightarrow\) past
fem \(\rightarrow\) fem

May 15, 2008
Problems of Deep Syntactic English-to-Czech MT
Combining Models

- The original STSG (Eisner, 2003) extended to a log-linear model:

\[
\hat{\delta} = \arg\max_{\delta \in \Delta(T_1)} \exp \left(\sum_{m=1}^{M} \lambda_m h_m(\delta) \right)
\]

instead of

\[
\hat{\delta} = \arg\max_{\delta \in \Delta(T_1)} p(t_{1:2}^0|Start_{1:2}) \ast \prod_{i=1}^{k} p(t_{1:2}^k|q_{1:2}^k)
\]

- The configuration specifies treelet-construction methods to use:
 - E.g. prefer “Preserve everything” but back-off to factored node-by-node.
- Weights λ_m of simultaneously used models chosen to achieve high BLEU.
 - Implemented binding to two MERT methods: (Och, 2003) a (Smith and Eisner, 2006)
 - Fails to converge (too many weights) \Rightarrow manually pick some values.
Current Results (BLEU)

<table>
<thead>
<tr>
<th>Layers \ Language Models</th>
<th>no LM</th>
<th>n-gram/\ binode</th>
</tr>
</thead>
<tbody>
<tr>
<td>epcp, no factors</td>
<td>8.65±0.55</td>
<td>10.90±0.63</td>
</tr>
<tr>
<td>eaca, no factors</td>
<td>6.59±0.52</td>
<td>8.75±0.61</td>
</tr>
<tr>
<td>etca, no factors</td>
<td>-</td>
<td>6.30±0.57</td>
</tr>
<tr>
<td>etct factored, preserving structure</td>
<td>5.31±0.53</td>
<td>5.61±0.50</td>
</tr>
<tr>
<td>eact, source factored, output atomic</td>
<td>-</td>
<td>3.03±0.32</td>
</tr>
<tr>
<td>etct, no factors, all attributes</td>
<td>1.61±0.33</td>
<td>2.56±0.35</td>
</tr>
<tr>
<td>etct, no factors, just t-lemmas</td>
<td>0.67±0.19</td>
<td>-</td>
</tr>
</tbody>
</table>

May 15, 2008 Problems of Deep Syntactic English-to-Czech MT
Why the t-layer Performs So Poorly?

- **Cumulation of Errors:**
 - e.g. 93% tagging * 85% parsing * 93% tagging * 92% parsing = 67%

- **Data Loss** due to incompatible structures:
 - Any error in either of the parses and/or the word-alignment prevents treelet pair extraction.

- **Combinatorial Explosion** of factored output:
 - Translation options are first fully built, before combination is attempted.
 - Abundance of t-node attribute combinations
 ⇒ e.g. lexically different translation options pushed off the stack
 ⇒ n-bestlist varies in unimportant attributes.

- **Deterministic Sentence Generation:**
 - Does not use an n-gram language model.
 - Tuned on manual t-trees, not on automatic trees coming from English.
Comparison with Phrase-Based MT

<table>
<thead>
<tr>
<th>Method</th>
<th>Language Model</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>factored Moses, more data</td>
<td>wordform 4-grams + tag 7-grams, big corpus</td>
<td>15.3±0.9</td>
</tr>
<tr>
<td>factored Moses, more data</td>
<td>wordform 3-grams + tag 7-grams</td>
<td>14.2±0.7</td>
</tr>
<tr>
<td>basic Moses (no factors)</td>
<td>wordform 3-grams</td>
<td>12.9±0.6</td>
</tr>
<tr>
<td>epcp, no factors</td>
<td>3-grams</td>
<td>10.90±0.63</td>
</tr>
<tr>
<td>epcp, no factors</td>
<td>none</td>
<td>8.65±0.55</td>
</tr>
<tr>
<td>best of etct</td>
<td>binode</td>
<td>5.61±0.50</td>
</tr>
</tbody>
</table>

- Moses beats “epcp” because:
 - “epcp” does not allow any phrase reordering.
 - MERT works well in Moses.
- n-gram LM clearly helpful but even “epcp” without a LM $> “etct”.$
Don’t Dump Deep Syntax Yet

TectoMT (?): mostly deterministic heuristics for t-transfer.

WMT08 Results

<table>
<thead>
<tr>
<th></th>
<th>In-domain</th>
<th>Out-of-domain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BLEU</td>
<td>Rank</td>
</tr>
<tr>
<td>Factored Moses</td>
<td>15.91</td>
<td>-2.62</td>
</tr>
<tr>
<td>PC Translator</td>
<td>8.48</td>
<td>-2.78</td>
</tr>
<tr>
<td>TectoMT</td>
<td>9.28</td>
<td>-3.29</td>
</tr>
<tr>
<td>Vanilla Moses</td>
<td>12.96</td>
<td>-3.33</td>
</tr>
<tr>
<td>etct</td>
<td>4.98</td>
<td>-</td>
</tr>
</tbody>
</table>
Summary

- Deep syntactic transfer provides a hope for grammatical MT.
 - including a vision of fancy features (co-reference, topic-focus).
- More complicated setup \Rightarrow many more parameters to tune.
- Linguistic features can easily explode the search space.
- Errors cumulate, conflicts cause data loss (two parsers worse than one).
- Vanilla STSG not usable:
 - Strong assumptions (structural compatibility, atomic labels) \Rightarrow sparse data.
 - Need to improve back-off methods.
 - Need to carefully explore the search space.

(Never use “clever” methods where copy-paste works.)
References

References

Little Trees Formally

Given a set of states Q and a set of word labels L, we define:

A little tree or treelet t is a tuple (V, V^i, E, q, l, s) where:

- V is a set of nodes,
- $V^i \subseteq V$ is a nonempty set of internal nodes. The complement $V^f = V \setminus V^i$ is called the set of frontier nodes,
- $E \subseteq V^i \times V$ is a set of directed edges starting from internal nodes only and forming a directed acyclic graph,
- $q \in Q$ is the root state,
- $l : V^i \rightarrow L$ is a function assigning labels to internal nodes,
- $s : V^f \rightarrow Q$ is a function assigning states to frontier nodes.

Optionally, we can keep track of local or global ordering of nodes in treelets.

I depart from Čmejrek (2006) in a few details, most notably I require at least one internal node in each little tree.
Treelet Pair Formally, Synchronous Derivation

A **treelet pair** \(t_{1:2} \) is a tuple \((t_1, t_2, m) \) where:

- \(t_1 \) and \(t_2 \) are little trees for source and target languages \((L_1 \) and \(L_2) \) and states \((Q_1 \) and \(Q_2) \),
- \(m \) is a 1-1 mapping of frontier nodes in \(t_1 \) and \(t_2 \).

Unlike Čmejrek (2006), I require all frontier nodes mapped, i.e. equal number of left and right frontier nodes.

From a starting synchronous state \(\text{Start}_{1:2} \in Q_1 \times Q_2 \), a synchronous derivation \(\delta \) constructs a pair of dependency trees by:

- attaching treelet pairs \(t^0_{1:2}, \ldots, t^k_{1:2} \) at corresponding frontier nodes, and
- ensuring that the root states \(q^0_{1:2}, \ldots, q^k_{1:2} \) of the attached treelets pairs \(t^0_{1:2}, \ldots, t^k_{1:2} \) match the frontier states of the corresponding frontier nodes.

Can define probability of a derivation: \(p(\delta) = p(t^0_{1:2}|\text{Start}_{1:2}) \times \prod_{i=1}^{k} p(t^k_{1:2}|q^k_{1:2}) \)