The TCH Machine Translation System for IWSLT 2008

Haifeng Wang
Toshiba (China) R&D Center
Oct. 20, 2008
Outline

• Overview

• Modules
 – Dictionary, segmentation, alignment, NE
 – LM, Punctuation and case restoration

• Tasks
 – CE: CT, BTEC
 – EC: CT
 – CS: BTEC
 – CES: PIVOT

• Evaluation Results

• Summary
Introduction

• Tasks
 – BTEC tasks: BTEC_CE, BTEC_CS
 – Challenge tasks: CT_CE, CT_EC
 – Pivot task: PIVOT_CES

• Methods
 – SMT
 – RBMT
 – Pivot SMT
 – Combination
 – Module improvement

• Resources
 – Supplied resources provided for each data track
 – Other publicly available resources
MT Methods

• SMT
 – Phrase-based SMT: Moses

• Pivot SMT
 (Wu and Wang, ACL 2007)
 – Phrase translation probability
 – Lexical weight

• RBMT
 – Publicly available software: Dr. eye

• Combination of RBMT and SMT
 (Hu, Wang and Wu, EMNLP 2007)
 – Using SMT system as the main MT system
 – Using RBMT system to produce synthetic bilingual corpus
 – The SMT system is trained using both real and synthetic corpus

• Translation selection
 – 5-gram LM method (Chen et al. IWSLT 2006)
 – Target sentence average length method
Modules

- Dictionary
- Chinese Word Segmentation
- Word Alignment
- Named Entity Translation
- Language Model
- Punctuation Restoration
- Case Restoration
Bilingual Dictionary

- Existed bilingual dictionary
 - General dictionary
 - LDC Chinese-English translation lexicon
 - NE dictionary
 - LDC Chinese <-> English Name Entity Lists
 - Person names and location names

- Dictionary extracted from corpus
 - Automatically extracted from in-domain corpus
 - Bidirectional word alignment
 - Filtering
 - Translation probability
 - Co-occurring frequency
 - Check
Chinese Monolingual Dictionary

• Dictionaries
 – General dictionary
 • Extracted from LDC Chinese-English lexicon
 – NE dictionary
 • Extracted from LDC Chinese-English NE list
 – In-domain dictionary
 • Extracted from in-domain corpus

• Word granularity
 – Tune the word unit referring to its translation in target language
 • Word
 • Multi-word expression
Chinese Word Segmentation

• Initial experiments
 – Segmentation ambiguity in domain-specific spoken language is not serious

• Segmentation method
 – Forward maximum-matching
 • Basic segmentation method
 – Back one character method
 • To indentify ambiguous fragment
 – Ambiguous fragments database
 • For disambiguation

• Word normalization
 – To deal with data sparseness
 – Extract a synonym list from translation dictionary and corpus
 – Only used when Chinese is source language
Word Alignment

- **Alignment algorithm**
 - Bidirectional word alignment using IBM models
 - Keep links in the intersection set
 - Keep links occurring in bilingual dictionaries
 - Delete links conflicting with the links in the final alignment set
 - Keep remained links
 - Different alignment heuristics
 - Grow-diag (CE, CS), grow (EC), grow-diag-final (ES)

- **Resources**
 - Bilingual corpus
 - General dictionary
 - Domain-specific dictionary
Named Entity Translation

• NE recognition and translation

<table>
<thead>
<tr>
<th>Method</th>
<th>Digit</th>
<th>Date</th>
<th>Time</th>
<th>Person name</th>
<th>Location name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule</td>
<td>Rule</td>
<td>Rule</td>
<td>Rule</td>
<td>Dictionary</td>
<td>Dictionary</td>
</tr>
</tbody>
</table>

• NE processing in SMT
 – Training
 • Replace NEs in the training data with NE tags
 • Train model on the data with NE tags
 – Translating
 • Replace NEs in the input sentence with NE tags
 • Translate
 • Restore the NE tags with their translations
Language Model

• In-domain corpus
 – Target language part of the provided corpus for a given track

• Out-of-domain corpus
 – Publicly available corpus
 – Selection
 • Perplexity
 • Sentence
 • Using the in-domain LM

• Interpolation
 – Linear interpolation using SRILM
 – Weight tuned on development sets
Punctuation Restoration

• Restore punctuation in source language
• English
 – Hidden-ngram (SRILM toolkit)
 – Rules
 • By hand
 • Based on some keywords, e.g. a sentence begin with “could”
• Chinese
 – Maximum entropy model
 – 2 steps
 • Position determination
 • Punctuation determination
 – Features
 • Words around a boundary
 • Words at the beginning or end of a sub-sentence
Case Restoration

• Restore case in target language
 – English
 – Spanish

• Method
 – recaser
 • In the training scripts of Moses
 • As a MT problem
 • Trained on the corpus with case information
 – Lexicon based post-processing
 • To process English words that should be capitalized
 Such as proper nouns
 • The lexicon is extracted from some available resources
 Such as training text in respective tasks, HIT corpus, Tanaka corpus
Tasks

• Five tasks
 – Chinese-English
 • Challenge task (CT_CE)
 • BTEC task (BTEC_CE)
 – English-Chinese
 • Challenge task (CT_EC)
 – Chinese-Spanish
 • BTEC task (BTEC_CS)
 – Chinese-English-Spanish
 • Pivot task (PIVOT_CES)

• Input
 – Spontaneous speech (SS)
 – Read speech (RS)
 – Correct recognition result (CRR)
Chinese-English Tasks – Data

• Dictionary

<table>
<thead>
<tr>
<th>Type</th>
<th>General</th>
<th>Domain</th>
<th>NE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>LDC2002L27</td>
<td>Extracted from In-domain corpus</td>
<td>LDC2005T34</td>
</tr>
<tr>
<td>Number</td>
<td>54,170</td>
<td>38,620</td>
<td>47692</td>
</tr>
</tbody>
</table>

• Training Corpus

<table>
<thead>
<tr>
<th>Corpus</th>
<th>BTEC</th>
<th>HIT</th>
<th>CLDC</th>
<th>Tanaka</th>
</tr>
</thead>
<tbody>
<tr>
<td># sentence pairs</td>
<td>19,972</td>
<td>80,868</td>
<td>200,732</td>
<td>149,207</td>
</tr>
<tr>
<td># source words</td>
<td>177,168</td>
<td>802,454</td>
<td>2,113,534</td>
<td>-</td>
</tr>
<tr>
<td># target words</td>
<td>182,627</td>
<td>822,508</td>
<td>2,096,731</td>
<td>1,351,645</td>
</tr>
</tbody>
</table>

– Selection and preprocessing

• Development set
 – devset1, devset2, devset4

• Test set
Chinese-English Tasks – Experimental Results

Results (Case sensitive BLEU score, CRR input)

<table>
<thead>
<tr>
<th>Method</th>
<th>devset3</th>
<th>devset5</th>
<th>devset6</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBMT</td>
<td>0.4253</td>
<td>0.2020</td>
<td>0.2086</td>
</tr>
<tr>
<td>Baseline</td>
<td>0.5186</td>
<td>0.2013</td>
<td>0.2807</td>
</tr>
<tr>
<td>Our segmenter</td>
<td>0.5425</td>
<td>0.2047</td>
<td>0.3029</td>
</tr>
<tr>
<td>+HIT</td>
<td>0.5697</td>
<td>0.2323</td>
<td>0.3416</td>
</tr>
<tr>
<td>+Dic</td>
<td>0.5819</td>
<td>0.2375</td>
<td>0.3456</td>
</tr>
<tr>
<td>+NE</td>
<td>0.5838</td>
<td>0.2396</td>
<td>0.3537</td>
</tr>
<tr>
<td>+CLDC</td>
<td>0.5891</td>
<td>0.2445</td>
<td>0.3554</td>
</tr>
<tr>
<td>+RBMT</td>
<td>0.6091</td>
<td>0.2536</td>
<td>0.3570</td>
</tr>
<tr>
<td>+LM Inter.</td>
<td>0.6223</td>
<td>0.2516</td>
<td>0.3823</td>
</tr>
</tbody>
</table>

Translation selection

- **Mert**
 - Default: default in Moses
 - Mert1: best on devset5
 - Mert2: Stable

<table>
<thead>
<tr>
<th>Method</th>
<th>devset3</th>
<th>devset5</th>
<th>devset6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>0.5927</td>
<td>0.2547</td>
<td>0.3453</td>
</tr>
<tr>
<td>Mert1</td>
<td>0.6061</td>
<td>0.2679</td>
<td>0.3837</td>
</tr>
<tr>
<td>Mert2</td>
<td>0.6274</td>
<td>0.2551</td>
<td>0.3863</td>
</tr>
<tr>
<td>Select</td>
<td>0.6260</td>
<td>0.2627</td>
<td>0.3882</td>
</tr>
</tbody>
</table>
English-Chinese Tasks – Data

• Dictionary
 – General dictionary, domain dictionary, NE dictionary
 (Same as CE tasks)

• Training Corpus

<table>
<thead>
<tr>
<th>Corpus</th>
<th>BTEC</th>
<th>HIT</th>
</tr>
</thead>
<tbody>
<tr>
<td># sentence pairs</td>
<td>19,972</td>
<td>89,318</td>
</tr>
<tr>
<td># source words</td>
<td>189,041</td>
<td>945,010</td>
</tr>
<tr>
<td># target words</td>
<td>178,339</td>
<td>914,121</td>
</tr>
</tbody>
</table>

 – Selection
 – Preprocessing
 • English abbreviation restoration
 • Without Chinese word normalization

• Development and test set
 – devset, devset3
 – No MERT
English-Chinese Tasks – Experimental Results

Results

<table>
<thead>
<tr>
<th></th>
<th>devset3</th>
<th>devset</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBMT</td>
<td>0.4362</td>
<td>0.4425</td>
</tr>
<tr>
<td>Baseline</td>
<td>0.4455</td>
<td>0.4511</td>
</tr>
<tr>
<td>Our segmenter</td>
<td>0.4528</td>
<td>0.4564</td>
</tr>
<tr>
<td>+Dic</td>
<td>0.4551</td>
<td>0.4684</td>
</tr>
<tr>
<td>+NE</td>
<td>0.4558</td>
<td>0.4773</td>
</tr>
<tr>
<td>+HIT</td>
<td>0.4830</td>
<td>0.5325</td>
</tr>
<tr>
<td>+RBMT</td>
<td>0.5131</td>
<td>0.5426</td>
</tr>
<tr>
<td>+Select</td>
<td>0.5133</td>
<td>0.5551</td>
</tr>
</tbody>
</table>

Translation selection
- 2 Candidates
 - Without RBMT
 - With RBMT
 - Selection metric: LM
Chinese-Spanish Tasks

• Training Corpus
 – BTEC data provided for this task
 – Preprocessing similar as CE task
• Dictionary
 – Extracted from the training corpus (9990 entries)
• Test set
 – Devset3
• Post-processing
 – Rule-based, such as question mark "?" and "¿"
• Experimental Results

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Our segmenter</th>
<th>+dic</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLEU</td>
<td>0.3596</td>
<td>0.3726</td>
<td>0.3839</td>
</tr>
</tbody>
</table>
Chinese-English-Spanish – Data

• Dictionary
 – LDC CE dictionary
 – CE dictionary extracted from BTEC and HIT CE corpus (39010)
 – ES dictionary extracted from BTEC and Europarl ES corpus (10426)

• Training Corpus

<table>
<thead>
<tr>
<th>Corpus</th>
<th>BTEC CE</th>
<th>HIT CE</th>
<th>BTEC ES</th>
<th>Europarl ES</th>
<th>Tanaka</th>
</tr>
</thead>
<tbody>
<tr>
<td># sentence pairs</td>
<td>20,000</td>
<td>80,868</td>
<td>19,972</td>
<td>400,000</td>
<td>149,207</td>
</tr>
<tr>
<td># source words</td>
<td>164,957</td>
<td>802,454</td>
<td>182,627</td>
<td>8,485,253</td>
<td>-</td>
</tr>
<tr>
<td># target words</td>
<td>182,793</td>
<td>822,508</td>
<td>185,527</td>
<td>8,219,380</td>
<td>1,351,645</td>
</tr>
</tbody>
</table>

 – Selection and preprocessing

• Test set
 – devset3
Chinese-English-Spanish – Experimental Results

• Results

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>+dic+HIT+Europarl</th>
<th>+RBMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pivot model</td>
<td>0.2791</td>
<td>0.3616</td>
<td>0.4136</td>
</tr>
<tr>
<td>Transfer model</td>
<td>0.3243</td>
<td>0.4139</td>
<td>0.4423</td>
</tr>
<tr>
<td>Trans. selection</td>
<td>-</td>
<td>-</td>
<td>0.4510</td>
</tr>
</tbody>
</table>

• RBMT
 – Translate the English part of ES corpus into Chinese -> synthetic CE corpus
 – Synthetic CE corpus is used in pivot and transfer model

• Transfer model is better than pivot model
 – CE translation is quite good (0.6024)
 – English and Spanish are more similar than Chinese and Spanish
 – pivot model contains much more noise than the transfer model

• Translation selection
 – Selection metric: length
IWSLT 2008 Evaluation Results

<table>
<thead>
<tr>
<th>Method</th>
<th>(Bleu + Meteor)/2</th>
<th>Bleu</th>
<th>Meteor</th>
<th>Human Eval.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT_EC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>0.5647</td>
<td>0.4818</td>
<td>0.6476</td>
<td>0.3906</td>
</tr>
<tr>
<td>CRR</td>
<td>0.6566</td>
<td>0.5912</td>
<td>0.7219</td>
<td>-</td>
</tr>
<tr>
<td>CT_CE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>0.5257</td>
<td>0.4166</td>
<td>0.6347</td>
<td>0.4516</td>
</tr>
<tr>
<td>CRR</td>
<td>0.5909</td>
<td>0.4980</td>
<td>0.6837</td>
<td>-</td>
</tr>
<tr>
<td>BTEC_CE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>0.5358</td>
<td>0.4474</td>
<td>0.6241</td>
<td>0.4730</td>
</tr>
<tr>
<td>CRR</td>
<td>0.5887</td>
<td>0.5085</td>
<td>0.6688</td>
<td>-</td>
</tr>
<tr>
<td>BTEC_CS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>0.3273</td>
<td>0.3218</td>
<td>0.3328</td>
<td>0.4316</td>
</tr>
<tr>
<td>CRR</td>
<td>0.3597</td>
<td>0.3582</td>
<td>0.3611</td>
<td>-</td>
</tr>
<tr>
<td>PIVOT_CES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>0.3620</td>
<td>0.3657</td>
<td>0.3583</td>
<td>0.4624</td>
</tr>
<tr>
<td>CRR</td>
<td>0.4044</td>
<td>0.4157</td>
<td>0.3931</td>
<td>-</td>
</tr>
</tbody>
</table>
Summary

• Tasks
 – BTEC_CE, BTEC_CS, CT_CE, CT_EC, PIVOT_CES

• Resources
 – Supplied resources provided for each data track
 – Other Publicly available resources

• Methods
 – Adaptation of Chinese word segmentation
 – Word alignment refinement using dictionary and various heuristics
 – Named entities translation
 – Additional corpus (In-domain, Out-of-domain)
 – Combination of SMT and RBMT
 – Translation selection
Thanks!