NTT SMT System for IWSLT 2008

Katsuhito Sudoh, Taro Watanabe, Jun Suzuki, Hajime Tsukada, and Hideki Isozaki
NTT Communication Science Labs., Japan
Overview

• 2-stage translation system
 – k-best translation candidates are generated by hierarchical phrase-based SMT
 – The top-best candidate is chosen by a reranker based on Ranking SVMs with large-scale sparse features

• Evaluation on Chinese-to-English challenge task
Stage 1: Translation

• **Hiero** (Chiang, CL 2007): in-house implementation
 – Hierarchical phrase-based SMT
 – CKY-based decoder
 – **Minimum Error Rate Training**
 • Decoder features are same as our IWSLT ‘06 system
 – Hierarchical and lexical translation probabilities
 – Insertion, deletion, and reordering penalties
 – Length penalties (words / hierarchical phrases)
 – Word 5-gram language model scores
Stage 2: Reranking

- Reorder k-best translation candidates after decoding
 - Ranking SVMs with large scale sparse features
 - Incorporate context features
 - Difficult to use in decoding (e.g. MIRA-based method)
Ranking SVMs (Joachims, 2002)

• Ranking samples (not classification)
 – Trained using ordered k-best candidates $e_1^*,...,e_k^*$
 – Metric: Approximated BLEU
 • Converted to top-best vs. non-best pairwise difference pairs D
 – $D = \{d_{ij} = e_i^* - e_j^* | e_i^* \in \langle \text{top-best} \rangle, e_j^* \in \langle \text{non-best} \rangle \}$
 \[D' = \{d_{ij} = e_i^* - e_j^* | 1 \leq i < k, 1 < j \leq k, i < j \} \]
 • Optimizing classification SVMs on D
 – Test: choose highest-scored candidate
Approximated BLEU

• BLEU : document-wise score
 – Requires re-computation in every iteration
 – Not suitable for independently assigning scores to k-best candidates

• Approximated BLEU (Watanabe, IWSLT 2006)
 – Sentence-wise approximation of document-wise BLEU (not sentence-wise BLEU)
 – Independently calculated for each candidate
 – Constant throughout optimization
Approximated BLEU (cont’d)
Reranker Features

• Intra-sentence features
 – Word alignments
 • Source-target word pairs aligned by IBM Model 1
 • Target-source direction was also considered
 • Alignment bigram: $a(i) \ast a(i+1)$
 – Word pairs
 • Arbitrary source-target unigram/bigram pairs within each sentence
 – Target-side skip bigrams
Reranker Features (cont’d)

• Inter-sentence feature
 – Context-dependent word pairs
 • Arbitrary pair of [target word unigram] and
 [source/target word unigram in the previous
 sentence]
Pegasos

• Fast optimization algorithm for linear-kernel SVMs (Shalev-Shwartz et al., ICML 2007)
 – Use sub-gradients calculated based only on k samples in each iteration
 – Learning time does not depend on data size
Post-evaluation

• Optimize SVM soft-margin parameter
 – 2-/3-fold cross validation on devset.CT_CE (246 sentences)
 – We didn’t optimize it in the official evaluation!!

• Use the whole rank order in training R-SVMs
 – The whole rank order did not increase BLEU in our development phase
Results (ASR 1-best input)

- No reranking
- Score + Align.
- +W.pair+skip2gram
- +context
Results (Clean input)

<table>
<thead>
<tr>
<th>No reranking</th>
<th>Score + Align.</th>
<th>+W.pair+skip2gram</th>
<th>+context</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.16</td>
<td>40.01</td>
<td>38.47</td>
<td>37.1</td>
</tr>
<tr>
<td>42.16</td>
<td>44.13 44.43</td>
<td>44.38 44.97</td>
<td>42.62 42.96</td>
</tr>
</tbody>
</table>

Official Post-Eval. Post-Eval. (whole rank order)
Results : Summary

• Reranking with *optimized soft-margin parameters* achieved good BLEU results
• Alignment-independent features were effective
• Context features were *not* effective
Discussion

• Reranker chose adequate candidates
 – Word alignment features captured lexical correspondence

• Reranker chose fluent candidates
 – (Skip-)Bigram features captured target-side natural word order
 – Bigram pair features captured source-target co-occurrence of bigrams

• Reranker failed to utilize context information
 – Context features turned out to capture many general word co-occurrence
Distinctive Word Alignment Features

ST: ?-<EOS> / 吗
ST: 可以 / can
ST: tell-me / 请问
ST: i-would / 我-想
ST: would-like / 想
ST: you-have / 有
ST: <BOS>-i / 我
TS: 吗-<EOS> / <$.$$>
TS: ? / 吗
TS: 吗-<EOS> / ?
TS: 我-想 / i*like
TS: 在-哪里 / where
TS: 最近-的 / nearest^the
Distinctive Bigram Features

Bigram: ?-<EOS>
Bigram: .-<EOS>
Bigram: me-the
BigramPair: <BOS>-我 / <BOS>-i
BigramPair: <BOS>-我 / would-like
BigramPair: 吗-<EOS> / <BOS>-can
BigramPair: 吗-<EOS> / ?-<EOS>
BigramPair: 多少-钱 / how-much
BigramPair: 多少-钱 / ?-<EOS>
BigramPair: <BOS>-能 / <BOS>-can
BigramPair: 给-我 / give-me
SkipBigram: would-*-to
SkipBigram: <BOS>*-would
SkipBigram: <BOS>*-can
SkipBigram: do-*-have
SkipBigram: tell-*-the
Distinctive Context Features

TargetContext: for → ?
TargetContext: is → ?
TargetContext: a → you
TargetContext: i → you
TargetContext: . → is
TargetContext: ? → can
TargetContext: please → ?
TargetContext: , → can
SourceContext: 的 → ?
SourceContext: 一 → me
SourceContext: 吗 → me
SourceContext: 我 → .
Conclusion

• NTT’s 2-stage SMT system
 – Hierarchical phrase-based SMT decoder
 – SVM-based reranker with sparse features
 – Achieved 39.71%(ASR), 44.97%(clean) BLEU in Chinese-to-English challenge task
 – Reranker effectively utilized both monolingual and bilingual sparse features
 – Current context-dependent features are not effective