The GREYC Machine Translation System for the IWSLT 2008 campaign

Yves Lepage Adrien Lardilleux Julien Gosme Jean-Luc Manguin

GREYC, University of Caen, France
The system

- ALEPH is a pure example-based system that exploits proportional analogies (analogies of form).

Previous system: analogies between character strings:

\[
\text{you swim} : \text{he swims} :: \text{you surf} :: \text{he surfs}
\]

New system: can also work on words (used in IWSLT):

\[
\text{My hotel sucks} : \text{Your hotel sucks} :: \text{My hotel rocks} :: \text{Your hotel rocks}
\]

⇒ Nothing the character-based approach cannot deal with, but faster.
The participation of the GREYC

Tracks: all btec tasks

- Arabic to English
- Chinese to English
- Chinese to Spanish
- Chinese to Spanish by the way of English (Pivot)

Conditions: used only training data (no development set)
NON-DETERMINISTIC ANALOGY SOLVER

Previous implementation in C:

\[x : y :: z :: ? \Rightarrow ? = t \]

New solver in Python:

\[x : y :: z :: ? \Rightarrow ? = t_1 \]
\[\quad t_2 \]
\[\quad t_3 \]
\[\quad \vdots \]

Example

kalb : kulaib :: masjid : musaijid
kalb : kulaib :: masjid : musjaiid
kalb : kulaib :: masjid : musjiaid
NON-DETERMINISTIC ANALOGY SOLVER

Distribution of the number of analogical equations with the same number of solutions (number of solutions in abscissae; number of analogies in ordinates):

$\text{Ratio 1 solution:multiple solutions} = 30:1$
Re-engineering of the engine

Main issue of the engine
Efficient discovery of translation examples that are likely to form an analogical equation is critical.

⇒ Design of a new heuristic:
- Analogical terms are chosen according to their longest common substring.
- Can be pre-computed and saved on disk to speed up searches.

Benefit: number of attempted analogical equations that have at least one solution increased from 28% to 52%.
NEW ALIGNMENT METHOD

“Perfect” alignments contain those words that strictly appear on the same lines:

Allons boire un verre. ↔ Let’s have a drink.
Allons boire une bière ou deux. ↔ Let’s have a beer or two.
Une bière et un café. ↔ One beer and one coffee.
Je voudrais un verre de vin, s’il vous plaît. ↔ I’d like a glass of wine, please.
Je voudrais de la bière, s’il vous plaît. ↔ I’d like some beer, please.
Nous prendrons un pichet de vin. ↔ We’ll have a jug of wine.

"Perfect”

bière ↔ beer

"Perfect”

Je voudrais _, s’il vous plaît ↔ I’d like _, please

CONTEXTS

Allons boire une _ ou deux. ↔ Let’s have a _ or two.
Une _ et un café. ↔ One _ and one coffee.
Je voudrais de la _, s’il vous plaît. ↔ I’d like some _, please.

CONTEXTS

un verre de vin _. ↔ a glass of wine _.
de la bière _. ↔ some beer _.

(GREYC@IWSLT 2008)
NEW ALIGNMENT METHOD

How to extract the alignments for ambiguous terms?

```
Allons boire un verre . ↔ Let 's have a drink .
Allons boire une bière ou deux . ↔ Let 's have a beer or two .
Une bière et un café . ↔ One beer and one coffee .
```

```
Je voudrais un verre de vin , s' il vous plaît . ↔ I 'd like a glass of wine , please .
Je voudrais de la bière , s' il vous plaît . ↔ I 'd like some beer , please .
Nous prendrons un pichet de vin . ↔ We 'll have a jug of wine .
```

Make them perfect: split the corpus.

```
"Perfect"

verre ↔ drink
```

```
"Perfect"

verre ↔ glass
```

```
<table>
<thead>
<tr>
<th>Contexts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allons boire un _ . ↔ Let 's have a _ .</td>
</tr>
</tbody>
</table>

```
<table>
<thead>
<tr>
<th>Contexts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je voudrais un _ de vin , s' il vous plaît . ↔ I 'd like a _ of wine , please .</td>
</tr>
</tbody>
</table>

```
| P(drink|verre) | P(verre|drink) | P(glass|verre) | P(verre|glass) |
|----------|-------------|-------------|-------------|
| 0.5      | 1           | 0.5         | 1           |
```

(GREYC@IWSLT 2008)
NEW ALIGNMENT METHOD

Experiments on development set 3, using the first half for tuning and the second half for testing:
Details of the runs

3 runs for each task:

Primary: ALEPH (EBMT), with training data inflated with alignments generated by *malign* [Lardillleux & Lepage, next Wednesday];

Contrast 1: Moses [Koehn et al., 2007] with translation tables generated by malign;

Contrast 2: Moses with default translation tables (refined alignments from IBM model 4, with Giza++ [Och & Ney, 2003]).
Evaluation results

Results with CRR, case+punc:
Results synthesis

In most cases: $primary < contrast_1 \leq contrast_2$

- If one sees the $contrast_2$ as a kind of baseline, then our system could not even reach the baseline of SMT in its current state (recursivity not ready at the time of evaluation).
- + only training data was used... (and you?)
- There is room for improvement!