I²R Multi-Pass Machine Translation System for IWSLT-2008

Boxing Chen, Deyi Xiong, Min Zhang, Aiti Aw and Haizhou Li

Department of HLT
Institute for Infocomm Research (I²R), Singapore
Tasks

• Chinese-to-English
 – BTEC task
 – Challenge task

• Chinese-to-English-to-Spanish PIVOT task
 – Joint effort with UPC-TALP
 – Will be reported by the co-worker of UPC
Outline

• Multi-pass MT System
 – System Architecture
 – 1st pass: preprocessing
 – 2nd pass: decoding
 – 3rd pass: rescoring
 – 4th pass: system combination

• Experiments and results

• Conclusion
System Architecture

The diagram illustrates a system architecture involving various preprocessing steps and cascading processes.

1. Source string
2. Preprocessing setting 1
 - Moses1
 - Moses2
 - JoxHua
 - Tanyu1
 - Tanyu2
3. Simple cascading
4. 2N-best
5. Rescoring
6. 1-best
7. Weighted voting
8. Target string

The system processes through different stages, including n-gram expansion, M-best, rescoring, and 1-best, to generate the final target string.
Preprocessing

1st pass: preprocessing
Preprocessing

- Preprocessing
 - Tools: LDC-SEG \((L)\), ICTCLAS \((I)\)

<table>
<thead>
<tr>
<th></th>
<th>Preprocessing 1</th>
<th>Preprocessing 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ch</td>
<td>en</td>
</tr>
<tr>
<td>Tokenization</td>
<td>L</td>
<td>x</td>
</tr>
<tr>
<td>Txt-to-digit</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Lower-casing</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>
Decoding

2nd Pass: decoding
Decoding

- Preprocessing Setting
 - Moses1: preprocessing 1
 - All other 4 systems: preprocessing 2

- Moses: (open source)
 - Phrase-based system

- JosHUA: (open source)
 - Hierarchical phrase-based MT system

- Tranyu: (in-home)
 - BTG-based system
Tranyu

- Adapting BTG to phrasal translation
- CKY-style decoder
- Reordering models
 - MaxEnt-based
 - Features:
 - Boundary words (Xiong et al. 2006)
 - Linguistic annotations (Xiong et al. 2008)
- Systems
 - Tranyu 1: boundary words based reordering model
 - Tranyu 2: boundary words based reordering + linguistically annotated reordering model
Rescoring

3rd Pass: rescoring
Rescoring

- Rich additional feature functions

Moses Features:
- Translation Model
- Reordering model
- Language Model
- Word penalty
- Translation confidence

Rescoring Features:
1) Dir/Inv IBM model 1 and 3 score
2) Word-based association score
3) lexicalized word/block reordering probabilities
4) 6-gram target LM
5) 8-gram target word-class based LM
6) source and target length ratio
7) question feature
8) frequency of n-grams in the N-best
9) n-gram post-probabilities
10) sentence length post-probabilities
System Combination

4th Pass: System combination
System Combination: Simple Cascading

Simple Cascading: rescoring on two Moses generated N-best lists
System Combination: N-gram expansion

Diagram showing the process of n-gram expansion, M-best, rescoring, and resulting in 1-best.
System Combination: N-gram expansion

- \(n\)-gram expansion generates new hypotheses
 - Collect all the \(n\)-grams from the original N-best
 - Continuously expand the partial hypothesis through the \(n\)-grams.

<table>
<thead>
<tr>
<th>Reference:</th>
<th>my book is in the green basket.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original entry:</td>
<td>my book is in the green case. my book is inside the green basket.</td>
</tr>
<tr>
<td>3-grams:</td>
<td>my book is, book is in, is in the, in the green, the green case, is inside the, the green basket ...</td>
</tr>
<tr>
<td>(n)-gram expansion</td>
<td>Partial Hyp: my book is in (n)-gram: is in the New partial Hyp: my book is in the</td>
</tr>
<tr>
<td></td>
<td>New Hyp: my book is in the green basket.</td>
</tr>
</tbody>
</table>
System Combination: Weighted Voting

Weighted Voting:
Sentence-level System combination
Experiments

• Training data
 – Bilingual Training data:
 • BTEC supplied data (20K sentences)
 • HIT-corpus (132K sentences)
 • Olympic-corpus (54K sentences)
 • PKU-corpus (200K sentences)
 • Total: 399K sentence-pairs, 5.2M target words
 – Dev data: 6K sentences
 – Additional target data: Tanaka corpus
 • 155K sentence-pairs, 1.4M target running words
Effect of additional data

- **BLEU% score on dev sets**

<table>
<thead>
<tr>
<th></th>
<th>CSTAR03 (BTEC)</th>
<th>DEV08 (Challenge)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplied data</td>
<td>40.96</td>
<td>36.12</td>
</tr>
<tr>
<td>+dev. data</td>
<td>45.76</td>
<td>42.29</td>
</tr>
<tr>
<td>+addi. Data</td>
<td>50.98</td>
<td>44.92</td>
</tr>
<tr>
<td>All data</td>
<td>52.28</td>
<td>46.45</td>
</tr>
</tbody>
</table>
Results (Base & Resc): BTEC task

- Performances of five systems are very similar:
- Baseline: JosHUa > Moses2 > Tranyu2 > Moses1 > Tranyu1
- Rescoring: Moses2 = JosHUa > Tranyu2 > Moses1 > Tranyu1
- Rescoring improved about 1.6-2 BLEU-score for all systems
• Performances of five systems are also similar:
 • Baseline: JosHUa > Tranyu2 > Tranyu1 > Moses2 > Moses1
 • Rescoring: Tranyu2 > JosHUa > Moses2 > Moses1 > Tranyu1
 • Rescoring improved about 2-3 BLEU-score for all systems
Results: 1st stage System Combination

Simple Cascading

Advantages:
More features (include local feat. used in decoding)

Disadvantages:
Less distinct hypotheses

N-gram expansion

Advantages:
More distinct hypotheses

Disadvantages:
Less features (no local features)
Results: SC vs NE

- N-gram expansion (NE) outperformed simple cascading (SC)
- Compared with the best single system:
 - Simple cascading obtained about 0.9/1.3 BLEU-score
 - N-gram expansion obtained about 1.3/2.3 BLEU-score
Results: weighted voting

- Simple voting: weights of all systems are set to 1.
- Compared with the results of n-gram expansion:
 - Simple voting obtained about 0.8/0.6 BLEU-score
 - Weighted voting obtained about 1.0/1.3 BLEU-score
Official score

- Chinese-to-English BTEC and Challenge tasks

<table>
<thead>
<tr>
<th></th>
<th>BLEU (%)</th>
<th>NIST</th>
<th>METEOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTEC task</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASR</td>
<td>43.57</td>
<td>6.87</td>
<td>0.6017</td>
</tr>
<tr>
<td>CRR</td>
<td>49.26</td>
<td>7.65</td>
<td>0.6446</td>
</tr>
<tr>
<td>Challenge task</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASR</td>
<td>39.38</td>
<td>5.96</td>
<td>0.6142</td>
</tr>
<tr>
<td>CRR</td>
<td>46.89</td>
<td>6.66</td>
<td>0.6560</td>
</tr>
</tbody>
</table>
Conclusion and Discussion

• Conclusion
 – Multi-decoder to produce N-best lists
 – Rich additional feature functions to do rescoring
 – n-gram expansion to generate new hypotheses
 – Two-stage system combination

• Comments
 – As one reviewer pointed out: *the 5 systems are all phrase-based system, so the N-best lists are quite similar. It could not provide enough space for system combination. This may be the primary reason that its evaluation result is not too outstanding.*
Thanks for your attention!

Any questions?