Evaluation in Human Language Technology

Maghi King
ISSCO/TIM/ETI
University of Geneva
Two traditions

- Different viewpoints
- Different aims
- Different focus
- Different problems
But sharing

- Common interests
- Common problems
- At least one common dilemma
Different viewpoints

- Define what the software ought to be able to do
 - investigate how closely it gets to being able to do it

the research tradition
typified by evaluation campaigns
Different viewpoints

• Describe a task which a human wants to achieve
 – investigate to what extent the software actually helps him in accomplishing the task

 the industrial tradition
typified by ISO 9126 and 14598, EAGLES
Different aims

- The *research* tradition
 - Advancing the core technology

- The *industrial* tradition
 - Quality assurance during production
 - Minimizing investment risk
 - Maximizing return on investment
Different focus

• The research tradition
 – Concentrate on functionality, and within that on accuracy
 • (do the results meet the specifications)

• The industrial tradition
 – Concentrate on describing software quality
 • (what does ‘a good software’ mean?)
Good software: the quality chain

Internal quality predicts External quality

External quality predicts Quality in use
A quality model

- Constitutes a description of user needs in context
- States requirements on
 - Reflects potential

- Quality in use
 - Predicts
 - Predicts

Internal quality

External quality
Different problems

• The research tradition
 – Comparing apples and pears: finding acceptable metrics

• The industrial tradition
 – Generalizing away from a mass of specific and particular contexts: avoiding unacceptable expense
In slogan form

• The research tradition seeks to advance technology

• The industrial tradition seeks to minimize risk and maximize profit in using technology
So are they poles apart?

- Common interests
- Shared problems
Common interests

• The ISO quality characteristics
 – Functionality
 – Reliability
 – Usability
 – Efficiency
 – Maintainability
 – Portability
Relevant to research evaluation

• The ISO quality characteristics
 – Functionality
 – Reliability
 – Usability
 – Efficiency
 – Maintainability
 – Portability
However:

• Reliability, efficiency are pre-requisites:
 – Only tested indirectly

• Maintainability
 (analysability, changeability, stability, testability)
 – Tested directly, but between evaluations
So the difference is a task to be done?

• Can’t be true!
 – Choice of what to evaluate in the research tradition depends on what is assumed to contribute to achieving a generically useful task
 – Industrial tradition starts from a specifically useful task
So the difference is including the user?

- Can’t be true!

 - A task – generic or specific - implies a user
 - The *research* tradition makes assumptions about the user
 - The *industrial* tradition uses knowledge about specific users
So, is there any real difference?

• Only that:

 – The *research* tradition (rightly) works on the level of what would be useful at a very general level

 – The *industrial* tradition works on the level of what would be useful in a particular situation
So, is there any real difference?

• And that:
 – The **research** tradition directly tests functionality (accuracy)
 • Evaluation campaigns typically allow for improvement cycles, so
 • other quality characteristics are tested indirectly
 – The **industrial** tradition thinks in terms of one-off evaluations taking account of a particular context
 • All relevant quality characteristics have to be tested for explicitly
And just one fundamental difference

- Questions of suitability (sub-characteristic of functionality) are not pertinent in the research tradition

- And therein lie the roots of a shared dilemma
Both traditions rely critically on being able to find good metrics.
Good metrics

- Valid
- Reliable
- Objective
- Economical
- Informative
Comfortable cases

- The task is (relatively) simple, accuracy and suitability co-incide, e.g.

 - Word error rate in a dictation system
 - Modulo vocabulary known to the system

 - Precision/recall in a document retrieval system
 - Modulo a manageable pool of documents
 - Modulo agreement on relevance judgements
Increasing discomfort

• Suitability begins to outweigh accuracy, e.g.
 – Word error rate in dialogue systems
 – Lexical/terminology coverage in translation systems
 – String extraction in term extraction systems

• (not all words are equal)
Increasing discomfort

• Metrics become heavily resource dependent, e.g.
 – Creating relevance judgements for document retrieval systems working over a large document collection
 – Creating templates for fact extraction systems
 – Making gold standards is expensive
 – Expense prevents change of focus (research tradition)
 – Evaluation becomes unacceptably expensive (industrial tradition)
Common problems

• Objectivity becomes suspect, e.g.
 – Relevance judgements obtained by pooling results of several systems
And yet more common problems

• Validity becomes suspect, e.g.
 – Gold standard material does not match intended real application (BLEU, NIST …)
 – Metric is executed over a finite and stable data collection when real application works over much larger and unstable data collection (using a ‘snapshot’ of the web …)
More validity problems

- Humans get involved
 - In defining the gold standard (e.g. reference translations)
 - In executing the metric (e.g. information retrieval through web searching)
The shared dilemma: extreme discomfort

• Systems where

 – system performance and human performance cannot be separated out
 – the application by definition works over vast amounts of data which no human could master or analyse
 – the data is by definition constantly shifting
Symbiotic systems: some examples

- Document retrieval on the web
- Information retrieval on the web
- Data mining systems
- Text mining systems

- i.e. most of the emerging human language technologies!
Summary

• We have learnt a great deal
• We have a much better understanding of what we want
• We are faced with new and difficult challenges
A question for this workshop:

• How can we build on what we have learnt in order to
 – deploy effectively knowledge and experience gained
 – share experience and insights as they develop
 – build bridges to other evaluation communities
 – meet new challenges