Some problems in evaluating multimodal systems

Jean Carletta
University of Edinburgh
AMI Project
AMI Meeting Rooms

4 close- and 2 wide-view cameras, 4 head-set and 8 array microphones, presentation screen capture, whiteboard capture, pen devices, plus extra site-dependent devices.
Annotations

- location of person on video to aid tracking
- low level timestamping against signal
 - movement around room; emotion coding; some head and hand gesture; focus of attention
- orthographic transcription w/ timing at "segment" level and forced alignment
- discourse structure over orthography
 - dialogue acts w/ addressing, named entities, topic segments, linked abstractive and extractive summaries
Implications

• multimodal in using multiple capture devices of different types for the same basic events
 – even synchrony and determining what signals to read for what processes is hard
 – multiple people being recorded
• browser technologies themselves are multimodal
• many, many possible things to be evaluated
• highly interdisciplinary, but what binds the groups together is the vision of a system
Things we do know how to do (more or less)
Component evaluation

- Hand-annotate some data for "ground truth"
- Develop some statistical measure for differences between component output and the ground truth
- Improve component by improving on measure.
- Compete.
- In practice, community finds any performance improvement exciting, no matter how small.
CHIL technologies: forthcoming benchmarking (March-May 2006)

• **Audio technologies**
 – CTM Speech Recognition
 – FF Speech Recognition
 – Acoustic Person Tracking (in space)
 – Acoustic Speaker Identification
 – Speech Activity Detection
 – Acoustic Event Detection
 – Acoustic Environment Classification
 – Acoustic Emotion Recognition

• **Vision technologies**
 – Face & Head tracking
 – Visual Person Tracking
 – Visual Speaker Identification
 – Head Pose Estimation

• **Multimodal technologies**
 – Audiovisual Speech Recognition
 – Multimodal Person Identification
 – Multimodal Person Tracking

• **Content processing**
 – Questions Answering
 – Automatic Summarization
Typical processing flow

PROCESSING FOR FORM → PROCESSING FOR MEANING → PROCESSING FOR USER
Low level processes for form

• ASR
• Affect ("is it good, or bad?")
• Head, Hand, and Body Movement
• Localization and Tracking
• Person Segmentation and Identification
High level processes tending towards meaning

- Topic segmentation and labelling
- (Meaningful) gesture
- Dialog act segmentation and classification
- Addressing
- Named entity recognition
- Extractive summarization
- Abstractive summarization
- Indexing/Retrieval
- Syntactic chunking
- Focus of attention
Problems for evaluation
Problem 1: Component performance ≠ system performance

- The only real evaluation is extrinsic - does the system work for its intended users doing the intended task?
- Need component evaluation to aid development, but users can't evaluate components
- Improving a component doesn't necessarily improve the overall system evaluation; don't know when to stop investing in improvements
- Need system evaluation to aid development, but using extrinsic evaluation "in the loop" is expensive.
Problem 2: Even evaluation of simple things can be hard

- Currently, the community only evaluates the simplest tasks that are easiest to measure
- Example: CLEAR evaluation of 3D tracking
 - metric is easy to devise, based on Euclidean distance; ground truth marks the location
 - BUT what about other (more useful?) tasks on the same type of data, like "where is the person looking"?
Problem 3: Knock on effects of low level processing errors

- In a working system, high level processes do not have ground truth for inputs, just the output of low level processing
- Estimating distance between ground truth and output of low level processes will allow high level processes to fit approaches to likely errors
- Errors will still exist and must be taken into account in the evaluation metrics for the high level processes
Example: using ASR

• Some processes (e.g., NER, chunking) have been previously applied to text and have existing evaluation techniques

 BUT

• NER in multimodal systems is over ASR output, not "ground truth" text (human transcription)
 – can fail to recognize named entity because words are wrong
 – can recognize right named entity but wrong words
Problem 4: Different modalities use different evaluations

• Consider tracking
 – audio, video, or multimodal

• not just a matter of seeing whether combining information from different modalities improves results - communities conceive of as different tasks
Problem 5: No one ground truth

- for some components (e.g., summarizers), there is no one correct output

- can get human judges to look at component output and judge "goodness"
 - expensive, fixed cost per component/version

- can get a bunch of correct human-authored outputs and look at how well component output fits in
 - less expensive because fixed cost for any number of components/versions to test on same base material
 - need good measure of fit to judge goodness, but current measures don't correlate with human judgments - i.e., dangerous
Example: multi-document summarization

- two years ago, community thought objective evaluation would work
- been through a series of measurements that don't match human judgments
- discovered uncertainty even about what the task is
- BUT this is a relatively simple task compared to anything one would do with multi-modal sources like meetings
Problem 6: methodology for extrinsic evaluation

- field testing gives qualitative results, but is expensive and slow
- observational analysis of real users admits some quantification, but can't be sure how tasks compare so can't easily compare different interfaces
- need more control
Controlled system evaluation example

• Build multiple meeting browsers and a baseline system
• Have human observers play meetings in full, write true statements relating to content, complement them with false statements, and rank the set for importance
• Run subjects choosing which of the pair is true and false; give them some proportion of the running time of the meeting and score in terms of how many they answer, penalizing for wrong answers.
Issues for controlled approach

• Does the task bear any relationship to what users will actually do with the application?
 – Meeting browsing clearly isn't about truth/falsity of given statements. Is it even about question-answering?
 – user requirements for new technologies are hard to gather!

• What do you tell the annotators authoring the true/false statements to get good ones?
Problem 7: Data representation is hard, but important

• For most low level tasks, annotations are just timestamped labels drawn from an enumerated set

• Where the meaning of language is involved, structure is required

• Where input is from multiple modalities, they relate to each other
The diagram illustrates a syntactic and prosodic analysis of a sentence, with words and phrases marked for morphology, syntax, and prosody. The sentence structure shows the relationships between noun phrases (NP), verb phrases (VP), and prepositional phrases (PP). The prosodic layers indicate pitch and stress over time, with phases marking different stages of speech production. The hand gestures are also represented, with hand and target locations specified for both right and left hands.
Summary

• Component performance ≠ system performance
• We don't know how to devise evaluation metrics even for some simple, intuitive tasks
• Processing errors in low level components affect components that use their output and change how we have to evaluate them.
• Different modalities use different evaluations
• For some components, there is no one ground truth upon which to base an evaluation metric.
• Multimodal inputs and trying to get at meaning make data representation important.
Basic tension for MM interfaces

- To get really good comparability even just for components, need whole community to work on:
 - same task (so performance issues are the same, and it's worth everyone putting same effort into a component)
 - same data set (because a component developed on a different one won't work)
 - same architecture (so individual components have same impact on end performance)
- Great way to stifle innovation, hit local minima for progress, and make it hard to see how to use our results for a wide range of tasks
- Would really help publication rates.
What will aid progress? (1)

- Freely available data, annotations, and evaluation metrics
 - lowers the bar for contributing
 - student groups can do surprisingly well in some community evaluations, and that's important
- Allowing reuse of same data for different tasks, outside community evaluations, so someone with a bright idea can try it out cheaply
- Even the infrastructure for annotating is too fragmented at present
What will aid progress? (2)

• Better understanding of the relationship between component and system performance
 – subassemblies common to several systems at least must have characteristics that can be known
 – could there be a rule of thumb about importance of ASR accuracy to systems of different kinds?

• Better understanding of how to adapt components to different data set and different genres