Outline

- Reminder: Modeling and Decoding
- Why Syntax?
- Yamada and Knight: translating into trees
- Wu: tree-based transfer
- Chiang: hierarchical transfer
- Koehn: clause structure
- Other approaches

Phrase-Based Translation Model

Foreign input is segmented in phrases
- any sequence of words, not necessarily linguistically motivated
Each phrase is translated into English
Phrases are reordered

Decoding process builds an English translation left to right, by picking foreign phrases to translate into English phrases

Search Space for Decoding Too Big

Explosion of search space

\[\Rightarrow \text{Pruning, Beam Search} \]

Word-Based Translation Model

Translation process is broken up into small step:
- word translation, reordering, duplication, insertion
Decoding can be done similarly to phrase-based decoding
Advantages of Syntax-Based Translation

- Reordering for syntactic reasons
 - e.g., move German object to end of sentence
- Better explanation for function words
 - e.g., prepositions, determiners
- Conditioning to syntactically related words
 - translation of verb may depend on subject or object
- Use of syntactic language models

Reordering Table

| Original Order | Reordering | p(reorder|original) |
|----------------|-------------|-------------|
| PRP VB1 VB2 | PRP VB1 VB2 | 0.074 |
| PRP VB1 VB2 | PRP VB2 VB1 | 0.723 |
| PRP VB1 VB2 | VB1 PRP VB2 | 0.061 |
| PRP VB1 VB2 | VB1 VB2 PRP | 0.037 |
| PRP VB1 VB2 | VB2 PRP VB1 | 0.083 |
| PRP VB1 VB2 | VB2 VB1 PRP | 0.021 |
| VB TO | VB TO | 0.107 |
| VB TO | TO VB | 0.893 |
| TO NN | TO NN | 0.251 |
| TO NN | NN TO | 0.749 |
Decoding as Parsing

- Chart Parsing

```
PRP  he
kare ha ongaku wo kiku no ga daisuki desu
```

- Pick Japanese words

- Translate into tree stumps

Adding some more entries...

Combine entries
Decoding as Parsing

- Finished when all foreign words covered

Yamada and Knight: Training

- Parsing of the English side
 - using Collins statistical parser
- EM training
 - translation model is used to map training sentence pairs
 - EM training finds low-perplexity model
 → unity of training and decoding as in IBM models

Is the Model Realistic?

- Do English trees match foreign strings?
- Crossings between French-English [Fox, 2002]
 - 0.29-6.27 per sentence, depending on how it is measured
- Can be reduced by
 - flattening tree, as done by [Yamada and Knight, 2001]
 - detecting phrasal translation
 - special treatment for small number of constructions
- Most coherence between dependency structures

Inversion Transduction Grammars

- Generation of both English and foreign trees [Wu, 1997]
- Rules (binary and unary)
 - $A \rightarrow A_1A_2 \parallel A_1A_2$
 - $A \rightarrow A_1A_2 \parallel A_2A_1$
 - $A \rightarrow e \parallel f$
 - $A \rightarrow e \parallel s$
 - $A \rightarrow s \parallel f$
 \rightarrow Common binary tree required
 - limits the complexity of reorderings

Syntax Trees

- English binary tree

Syntax Trees (2)

- Spanish binary tree
Syntax-Based Statistical Machine Translation

Syntax Trees (3)

- Combined tree with reordering of Spanish

Chiang: Hierarchical Phrase Model

- Chiang [ACL, 2005] (best paper award!)
 - context free bi-grammar
 - one non-terminal symbol
 - right hand side of rule may include non-terminals and terminals

- Competitive with phrase-based models in 2005
 DARPA/NIST evaluation

Types of Rules

- Word translation
 - $X \rightarrow$ maison || house

- Phrasal translation
 - $X \rightarrow$ daba una bofetada || slap

- Mixed non-terminal / terminal
 - $X \rightarrow$ X bleue \| blue X
 - $X \rightarrow$ ne X pas \| not X
 - $X \rightarrow$ X1 X2 \| X2 of X1

- Technical rules
 - $S \rightarrow$ S X \| S X
 - $S \rightarrow$ X \| X

Learning Hierarchical Rules

$X \rightarrow$ X verde \| green X

$X \rightarrow$ a la X \| the X
Details

- Too many rules
 - filtering of rules necessary
- Efficient parse decoding possible
 - hypothesis stack for each span of foreign words
 - only one non-terminal \(\rightarrow\) hypotheses comparable
 - length limit for spans that do not start at beginning

Syntax-Based Statistical Machine Translation

Clause Level Restructuring

- Why clause structure?
 - languages differ vastly in their clause structure
 (English: SVO, Arabic: VSO, German: fairly free order;
 a lot details differ: position of adverbs, sub clauses, etc.)
 - large-scale restructuring is a problem for phrase models

- Restructuring
 - reordering of constituents (main focus)
 - add/drop/change of function words

 - ACL 2005 paper [Collins, Koehn, Kucerova]

Syntax-Based Statistical Machine Translation

Reordering When Translating

- Reordering when translating into English
 - tree is flattened
 - clause level constituents line up

Syntax-Aided Phrase-Based MT [Koehn]

- Approach:
 - stick with phrase-based system
 - special treatment for special syntactic problems

- Noun Phrase Translation
- Clause Level Restructuring

Syntax-Based Statistical Machine Translation

Clause Structure

ACL 2005 paper [Collins, Koehn, Kucerova]

- statistical parser by Amit Dubay, trained on TIGER treebank
Systematic Reordering German \rightarrow English

- Many types of reorderings are systematic
 - move verb group together
 - subject - verb - object
 - move negation in front of verb

\Rightarrow Write rules by hand
 - apply rules to test and training data
 - train standard phrase-based SMT system

<table>
<thead>
<tr>
<th>System</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline system</td>
<td>25.2%</td>
</tr>
<tr>
<td>with manual rules</td>
<td>26.6%</td>
</tr>
</tbody>
</table>

Improved Translations

- we must also this criticism should be taken seriously.
- i am with him that it is necessary, the institutional balance by means of a political revaluation of both the commission and the council to maintain.
- i agree with him in this, that it is necessary to maintain the institutional balance by means of a political revaluation of both the commission and the council.
- thirdly, we believe that the principle of differentiation of negotiations note.
- thirdly, we maintain the principle of differentiation of negotiations.
- perhaps it would be a constructive dialog between the government and opposition parties, social representative a positive impetus in the right direction.
- perhaps a constructive dialog between government and opposition parties and social representative could give a positive impetus in the right direction.

Other Syntax-Based Approaches

- ISI: extending work of Yamada/Knight
 - more complex rules
 - performance approaching phrase-based
- Prague: Translation via dependency structures
 - parallel Czech–English dependency treebank
 - tecto-grammatical translation model [EACL 2003]
- U.Alberta/Microsoft: treelet translation
 - translating from English into foreign languages
 - using dependency parser in English
 - project dependency tree into foreign language for training
 - map parts of the dependency tree (“treelets”) into foreign languages

Other Syntax-Based Approaches (2)

- Reranking phrase-based SMT output with syntactic features
 - create n-best list with phrase-based system
 - POS tag and parse candidate translations
 - rerank with syntactic features
 - see [Koehn, 2003] and JHU Workshop [Och et al., 2003]
- JHU Summer workshop 2005
 - final presentations this week
 - tools for syntax-based SMT

Syntax: Does it help?

- Not yet
 - best systems still phrase-based, treat words as tokens
- Well, maybe...
 - work on reordering German
 - automatically trained tree transfer systems promising
- Why not yet?
 - if real syntax, we need good parsers — are they good enough?
 - syntactic annotations add a level of complexity
 - difficult to handle, slow to train and decode
 - few researchers good at statistical modeling and understand syntactic theories