Combining Interlingua with SMT

Stephanie Seneff
CSAIL, MIT
Panel Discussion
August 11, 2006
Introduction

• Our group at MIT has been developing multilingual spoken dialogue systems since the late 1980’s
 – Common meaning representation for dialogue manager
 – Many different languages: English, French, Spanish, German, Italian, Chinese, Japanese, Korean
 – Many different domains: flights, weather, restaurants, hotels, calendar management, etc.

• Recent research has focused on dialogue interaction to learn a second language

• Spoken language translation can assist student:
 – Translation quality must be near perfect
 – Narrow domain makes it feasible

• This is a very different problem from general language text translation
Multilingual Spoken Translation Framework

Common meaning representation: *semantic frame*

- English
- Chinese
- Spanish
- Japanese

Recognition

Models

NLG

Generation Rules

Semantic Frame

Parsing Rules

Speech Corpora

Synthesis
Semantic Frame as Interlingua

- Our representation captures syntactic structure but discards temporal word order
- Decompose syntax-directed translation into two steps
 - Syntactic order to hierarchy
 - Hierarchy to syntactic order
- This greatly reduces the rule space
Some Thoughts

- Interlingual approach appears daunting (out of reach?) for general language text translation task
- Speech-based translation is necessarily domain-restricted due to speech recognition constraints
- Multilingual spoken dialogue systems are symbiotic with interlingual translation
 - Map all language inputs to common meaning representation
 - Provide large corpora of spoken utterances for training
- Proposal:
 - Pursue interlingual approach within restricted domains of existing conversational systems
 - Construct common grammar and generation rules for all domains
 - Seek generalities wherever feasible to reduce required expertise
Some Requirements for the Parsing and Generation Components

• Manually created lexicalized grammar capturing syntactic structure, developed by linguists
 – Include mechanism to address movement
 – Strong probability model
 – Automatic training methods
 – Simple rules to map to hierarchical semantic frame

• Generation system capable of producing multiple hypotheses and/or selecting for word senses based on context-conditioned probability model
 – Context conditions specified through hierarchical locality
Ways to Combine Linguistic and Statistical Methods

• Use statistical n-grams to post-select from multiple generation hypotheses
• Use SMT-assisted interactive tools to support grammar and lexicon development
• Use a statistical parser to post-select from multiple SMT outputs
• Use SMT as a back-up method upon parse failure
• Combine statistical alignment with parsing to seed translation lexicon (and to seed grammar for new language??)