Mining Complex Predicates In Hindi Using A Parallel Hindi-English Corpus

R. Mahesh K. Sinha
Department of Computer Science & Engineering
Indian Institute of Technology, Kanpur
Kanpur 208016 India
rmk@iitk.ac.in

Abstract

Complex predicate is a noun, a verb, an adjective or an adverb followed by a light verb that behaves as a single unit of verb. Complex predicates (CPs) are abundantly used in Hindi and other languages of Indo Aryan family. Detecting and interpreting CPs constitute an important and somewhat a difficult task. The linguistic and statistical methods have yielded limited success in mining this data. In this paper, we present a simple method for detecting CPs of all kinds using a Hindi-English parallel corpus. A CP is hypothesized by detecting absence of the conventional meaning of the light verb in the aligned English sentence. This simple strategy exploits the fact that CP is a multi-word expression with a meaning that is distinct from the meaning of the light verb. Although there are several shortcomings in the methodology, this empirical method surprisingly yields mining of CPs with an average precision of 89% and a recall of 90%.

1 Introduction

Complex predicates (CPs) are abundantly used in Hindi and other languages of Indo-Aryan family and have been widely studied (Hook, 1974; Abbi, 1992; Verma, 1993; Mohanan, 1994; Singh, 1994; Butt, 1995; Butt and Geuder, 2001; Butt and Ramchand, 2001; Butt et al., 2003). A complex predicate is a multi-word expression (MWE) where a noun, a verb or an adjective is followed by a light verb (LV) and the MWE behaves as a single unit of verb. The general theory of complex predicate is discussed in Alsina (1996). These studies attempt to model the linguistic facts of complex predicate formation and the associated semantic roles.

CPs empower the language in its expressiveness but are hard to detect. Detection and interpretation of CPs are important for several tasks of natural language processing tasks such as machine translation, information retrieval, summarization etc. A mere listing of the CPs constitutes a valuable linguistic resource for lexicographers, wordnet designers (Chakrabarti et al., 2007) and other NLP system designers. Computational method using Hindi corpus has been used to mine CPs and categorize them based on statistical analysis (Sriram and Joshi, 2005) with limited success. Chakrabarti et al. (2008) present a method for automatic extraction of V+V CPs only from a corpus based on linguistic features. They report an accuracy of about 98%. An attempt has also been made to use a parallel corpus for detecting CPs using projection POS tags from English to Hindi (Soni, Mukerjee and Raina, 2006). It uses Giza++ word alignment tool to align the projected POS information. A success of 83% precision and 46% recall has been reported.

In this paper, we present a simple strategy for mining of CPs in Hindi using projection of meaning of light verb in a parallel corpus. In the following section the nature of CP in Hindi is outlined and this is followed by system design, experimentation and results.

2 Complex Predicates in Hindi

A CP in Hindi is a syntactic construction consisting of either a verb, a noun, an adjective or an adverb as main predicator followed by a light verb (LV). Thus, a CP can be a noun+LV, an adjective+LV, a verb+LV or an adverb+LV. Further, it is also possible that a CP is followed by a LV (CP+LV). The light verb carries the tense and agreement morphology. In V+V CPs, the contribution of the light verb denotes aspectual terms such as continuity, perfectivity, inception, completion, or denotes an expression of forcefulness, suddenness, etc. (Singh, 1994; Butt, 1995). The CP in a sentence syntactically acts as a single lexical unit of verb that has a meaning dis-
tinct from that of the LV. CPs are also referred as the complex or compound verbs.

Given below are some examples:

(1): CP=noun+LV
noun = *ashirwad* {blessings}
LV = *denaa* {to give}
usane mujhe *ashirwad divaaa*.
उसने मुझे आशीर्वाद दिया
{he me blessings gave} he blessed me.

(2) No CP
usane mujhe ek pustak *dii*.
उसने मुझे एक पुस्तक दी
{he me one book gave} he gave me a book.

In (1), the light verb *divaaa* (gave) in its past tense form with the noun *ashirwad* (blessings) makes a complex predicate verb form *ashirwad divaaa* (blessed) in the past tense form. The CP here is *ashirwad denaa* and its corresponding English translation is ‘to bless’. On the other hand in example (2), the verb *dii* (gave) is a simple verb in past tense form and is not a light verb. Although, same Hindi verb *denaa* (to give) is used in both the examples, it is a light verb in (1) and a main verb in (2). Whether it acts as a light verb or not, depends upon the semantics of the preceding noun. However, it is observed that the English meaning in case of the complex predicate is not derived from the individual meanings of the constituent words. It is this observation that forms basis of our approach for mining of CPs.

(3) CP=adjective+LV
adjective=*khush* {happy}
LV = *karanaa* {to do}
usane mujhe *khush kiyaa*.
उसने मुझे खुश किया
{he me happy did} he pleased me.

Here the Hindi verb *kiyaa* (did) is the past tense form of a light verb *karanaa* (to do) and the preceding word *khush* (happy) is an adjective. The CP here is *khush karanaa* (to please).

(4) CP=verb+LV
verb = *paRhnaa* {to read}
LV = *lenaa* {to take}
usane pustak *paRh liyaa*.
उसने पुस्तक पढ़ लिया
{he book read took} he has read the book.

Here the Hindi verb *liyaa* (took) is the past tense form of the light verb *lenaa* (to take) and the preceding word *paRh* (read) is the verb *paRhnaa* (to read) in its stem form. The CP is *paRh lenaa* (to finish reading). In such cases the light verb acts as an aspectual/modal or as an intensifier.

(5) CP=verb+LV
verb = *phaadanaa* {to tear}
LV = *denaa* {to give}
usane pustak *phaad diyaa*.
उसने पुस्तक फाड़ दिया
{he book tear gave} he has torn the book.

Here the Hindi verb *diyaa* (gave) is the past tense form of the light verb *denaa* (to give) and the preceding word *phaad* (tear) is the stem form of the verb *phaadanaa* (to tear). The CP is *phaad denaa* (to cause and complete act of tearing).

(6) CP=verb+LV
verb = *maaranaa* {to hit/ to kill}
LV = *denaa* {to give}
usane pustak *de maaraa*.
उसने पुस्तक दे मारा
{he book give hit} he threw the book.

Here the Hindi verb *maaraa* (hit/killed) is the past tense form of the light verb *maaranaa* (to hit/ to kill) and the preceding word *de* (give) is a verb *denaa* (to give) in its stem form. The CP is *de maranaa* (to throw). The verb combination yields a new meaning. This may also be considered as a semi-idiomatic construct by some people.

(7) CP=adverb+LV1+LV2
adverb = *vaapas* {back}
LV1 = *karanaa* {to do}
LV2 = *denaa* {to give}
or
CP = CP+LV
CP = *vaapas karanaa* {to return}
LV = *denaa* {to give}
usane pustak *vaapas kar diyaa*.
उसने पुस्तक वापस कर दिया
{he book back do gave}
he returned the book.

Here there are two Hindi light verbs used. The verb *kar* (do) is the stem form of the light verb *karanaa* (to do) and the verb *diyaa* (gave) is the past tense form of the light verb *denaa* (to give). The preceding word *vaapas* (back) is an adverb. One way of interpretation is that the CP (a conjunct verb) *vaapas karanaa* (to return) is followed by another LV *denaa* (to give) signifying completion of the task. Another way of looking at it is to consider these as a combination of two CPs, *vaapas karanaa* (to return) and *kar denaa* (to complete the act). The semantic interpretations in the two cases remain the same. It may be noted that the word *vaapas* (return) is also a noun and in such a case the CP is a noun+LV.

From all the above examples, the complexity of the task of mining the CPs is evident. However, it is also observed that in the translated text, the meaning of the light verb does not appear in case of CPs. Our methodology for mining CPs is based on this observation and is outlined in the following section.

3 System Design

As outlined earlier, our method for detecting a CP is based on detecting a mismatch of the Hindi light verb meaning in the aligned English sentence. The steps involved are as follows:

1) Align the sentences of Hindi-English corpus;
2) Create a list of Hindi light verbs and their common English meanings as a simple verb;
3) For each Hindi light verb, generate all the morphological forms (Figure 1);
4) For each English meaning of the light verb as given in table 1, generate all the morphological forms (Figure 2);
5) For each Hindi-English aligned sentence, execute the following steps:
 a) For each light verb of Hindi (table 1), execute the following steps:
 i) Search for a Hindi light verb (LV) and its morphological derivatives (figure 1) in the Hindi sentence and mark its position in the sentence (K);
 ii) If the LV or its morphological derivative is found, then search for the equivalent English meanings for any of the morphological forms (figure 2) in the corresponding aligned English sentence;
 iii) If no match is found, then scan the words in the Hindi sentence to the left of the Kth position (as identified in step (i)); else if a match is found, then exit {i.e. go to step (a)}.
 iv) If the scanned word is a ‘stop word’ (figure 3), then ignore it and continue scanning;
 v) Stop the scan when it is not a ‘stop word’ and collect the Hindi word (W);
 vi) If W is an ‘exit word’ then exit {i.e. go to step (a)}; else the identified CP is W+LV.

Hindi has a large number of light verbs. A list of some of the commonly used light verbs along with their common English meanings as a simple verb is given in table 1. The light verb *kar* (do) is the most frequently used light verb. Using its literal meaning as ‘do’, as a criterion for testing CP is quite misleading since ‘do’ in English is used in several other contexts. Such meanings have been shown within parentheses and are not used for matching.

<table>
<thead>
<tr>
<th>light verb base form</th>
<th>root verb meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>baithanaa बैठना</td>
<td>sit</td>
</tr>
<tr>
<td>bananaa बनना</td>
<td>make/become/build/construct/ manufacture/prepare</td>
</tr>
<tr>
<td>bananaa बनना</td>
<td>make/build/construct/manufacture/ prepare</td>
</tr>
<tr>
<td>denaa देना</td>
<td>give</td>
</tr>
<tr>
<td>lenaa लेना</td>
<td>take</td>
</tr>
<tr>
<td>paanaa पााना</td>
<td>obtain/get</td>
</tr>
<tr>
<td>uthanaa उठना</td>
<td>rise/arise/get-up</td>
</tr>
<tr>
<td>uthaanaa उठना</td>
<td>raise/if/ wake-up</td>
</tr>
<tr>
<td>laganaa लगना</td>
<td>feel/appear/look/seem</td>
</tr>
<tr>
<td>lagaanaa लगाना</td>
<td>fix/install/apply</td>
</tr>
<tr>
<td>cukanaa चुकना</td>
<td>(finish)</td>
</tr>
<tr>
<td>cukaaana चुकााना</td>
<td>pay</td>
</tr>
<tr>
<td>karanaa करना</td>
<td>(do)</td>
</tr>
<tr>
<td>honaa होना</td>
<td>happen/become/be</td>
</tr>
<tr>
<td>aanaa आना</td>
<td>come</td>
</tr>
<tr>
<td>jaanaa जाना</td>
<td>go</td>
</tr>
<tr>
<td>khaanaa खाना</td>
<td>eat</td>
</tr>
<tr>
<td>rakhanaa रखना</td>
<td>keep/put</td>
</tr>
<tr>
<td>maaranaa मारना</td>
<td>kill/beat/hit</td>
</tr>
<tr>
<td>daalanaa डालना</td>
<td>put</td>
</tr>
<tr>
<td>haankanaa हांकना</td>
<td>drive</td>
</tr>
</tbody>
</table>

Table 1. Some of the common light verbs in Hindi
For each of the Hindi light verb, all morpho-
logical forms are generated. A few illustrations
are given in figures 1(a) and 1(b). Similarly, for
each of the English meaning of the light verb, all
of its morphological derivatives are generated.
Figure 2 shows a few illustrations of the same.

There are a number of words that can appear
in between the nominal and the light verb in a
CP. These words are ignored in search for a CP
and are treated as stop words. These are words
that denote negation or are emphasizers, inten-
sifiers, interrogative pronoun or a particle. A list
of stop words used in the experimentation is giv-
en in figure 3.

Figure 1(a). Morphological derivatives of sample
Hindi light verb ‘jaanaa’ जाना {to go}

LV: jaanaa जाना {to go}
Morphological derivatives:
ja aa jaao ja ae. M jaau.M jaane jaanaa jaanii jaataa
jaati jaate jaami. M jaati.M jaaoge jaaoii gaii
jaau.MgA jaaeyaa jaau.Mgii jaaeygi gay gaii.M
gayaa gavia jaaye.Mg jaay.Mg jaakara
जा (go: stem) जाए (go: imperative)
जाओ (go: first-person) जाए (go: infinitive, oblique)
जाना (go: infinitive, masculine, singular)
जानी (go: infinitive, feminine, singular)
जाता (go: indefinite, masculine, singular)
जाती (go: indefinite, feminine, singular)
जाते (go: indefinite, masculine, plural/oblique)
जानी (go: indefinite, feminine, plural)
जाती (go: indefinite, feminine, plural)
जाओ (go: future, masculine, singular)
जाओगी (go: future, feminine, singular)
लूँ (go: past, feminine, singular)
लेता (go: future, masculine, third-person, singular)
लेती (go: future, feminine, third-person, singular)
लेते (go: future, masculine, plural/oblique)
लेगा (go: future, masculine, third-person, singular)
लेगी (go: future, feminine, third-person, singular)
लेकर (go: completion)

Figure 1(b). Morphological derivatives of

Sample Hindi light verb 'lenaa' लेना {to take}

LV: lenaa लेना {to take}
Morphological derivatives:
le li le.M lo letaa letii le.li.M luu.M lega legii
lenaa leni liyaa le.Mge loge letii.M luu.Mgaa
luu.Mgii lekara
ले (take: stem) ली (take: past)
लेता (take: imperative, masculine, singular)
लेती (take: imperative, feminine, singular)
लें (take: indefinite, masculine, plural/oblique)
लें (take: indefinite, feminine, plural)
लें (take: future, masculine, third-person, singular)
लें (take: future, feminine, third-person, singular)
लें (take: future, masculine, third-person, singular)
लें (take: future, feminine, third-person, singular)
लें (take: future, masculine, plural)
लें (take: future, feminine, plural)
लें (take: infinite, masculine, singular)
लें (take: infinite, feminine, singular)
लिया (take: past, masculine, singular)
लें (take: past, feminine, singular)
लें (take: future, masculine, plural)
लें (take: future, feminine, plural)
लें (take: future, masculine, first-person, singular)
लें (take: future, feminine, first-person, singular)
लें (take: future, masculine, first-person, singular)
लें (take: future, feminine, first-person, singular)
लें (take: future, masculine, singular)
लें (take: future, feminine, singular)
लें (take: infinite, masculine, singular)
लें (take: infinite, feminine, singular)
लिया (take: past, masculine, singular)
लिया (take: past, feminine, singular)
लिया (take: future, masculine, singular)
लिया (take: future, feminine, singular)
लिया (take: future, masculine, plural)
लिया (take: future, feminine, plural)
लिया (take: infinite, masculine, plural)
लिया (take: infinite, feminine, plural)
लिया (take: indefinite, masculine, plural)
लिया (take: indefinite, feminine, plural)
लिया (take: imperative, masculine, plural)
लिया (take: imperative, feminine, plural)
लिया (take: completion)

Figure 2. Morphological derivatives of

Sample English meanings

We use a list of words of words that we have
named as ‘exit words’ which cannot form part of
a CP in Hindi. We have used Hindi case (vibhak-
tti) markers (also called parsarg), conjunctions
and pronouns as the ‘exit words’ in our imple-
mentation. Figure 4 shows a partial list used.
However, this list can be augmented based on
analysis of errors in LV identification. It should
be noted that we do not perform parts of speech
(POS) tagging and so the nature of the word pre-
ceding the LV is unknown to the system.
The inner loop of the procedure identifies multiple CPs that may be present in a sentence. The outer loop is for mining the CPs in the entire corpus. The experimentation and results are discussed in the following section.

4 Experimentation and Results

The CP mining methodology outlined earlier has been implemented and tested over multiple files of EMILLE (McEnery, Baker, Gaizauskas and Cunningham, 2000) English-Hindi parallel corpus. A summary of the results obtained are given in table 2. As can be seen from this table, the precision obtained is 80% to 92% and the recall is between 89% to 100%. The F-measure is 88% to 97%. This is a remarkable and somewhat surprising result from the simple methodology without much of linguistic or statistical analysis. This is much higher than what has been reported on the same corpus by Mukerjee et al, 2006 (83% precision and 46% recall) who use projection of POS and word alignment for CP identification. This is the only other work that uses a parallel corpus and covers all kinds of CPs. The results as reported by Chakrabarti et al. (2008) are only for V-V CPs. Moreover they do not report the recall value.

<table>
<thead>
<tr>
<th>No. of Sentences</th>
<th>File 1</th>
<th>File 2</th>
<th>File 3</th>
<th>File 4</th>
<th>File 5</th>
<th>File 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total no. of CP(N)</td>
<td>200</td>
<td>298</td>
<td>150</td>
<td>46</td>
<td>188</td>
<td>151</td>
</tr>
<tr>
<td>Correctly identified CP (TP)</td>
<td>195</td>
<td>296</td>
<td>149</td>
<td>46</td>
<td>175</td>
<td>135</td>
</tr>
<tr>
<td>V-V CP</td>
<td>56</td>
<td>63</td>
<td>9</td>
<td>6</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Incorrectly identified CP (FP)</td>
<td>17</td>
<td>44</td>
<td>7</td>
<td>11</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>Unidentified CP (FN)</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>Accuracy %</td>
<td>97.50</td>
<td>99.33</td>
<td>99.33</td>
<td>100.00</td>
<td>93.08</td>
<td>89.40</td>
</tr>
<tr>
<td>Precision % (TP/ (TP+FP))</td>
<td>91.98</td>
<td>87.05</td>
<td>95.51</td>
<td>80.70</td>
<td>91.62</td>
<td>87.09</td>
</tr>
<tr>
<td>Recall % (TP/ (TP+FP))</td>
<td>97.50</td>
<td>98.33</td>
<td>99.33</td>
<td>100.00</td>
<td>93.08</td>
<td>89.40</td>
</tr>
<tr>
<td>F-measure % (2PR / (P+R))</td>
<td>94.6</td>
<td>92.3</td>
<td>97.4</td>
<td>89.3</td>
<td>92.3</td>
<td>88.2</td>
</tr>
</tbody>
</table>

Table 2. Results of the experimentation
Given below are some sample outputs:

(1)
English sentence:
I also enjoy working with the children's parents who often come to me for advice - it's good to know you can help.

Aligned Hindi sentence:
मुझे बच्चों के माता - पिताओं के साथ काम करना भी अच्छा लगता हैं जो अक्सर मेरे लिए आते हैं - यह जानकार खुशी होती है कि आप किसी की मदद कर सकते हैं।

The CPs identified in the sentence:
i. काम करना (to work), ii. अच्छा लगना (to feel good: enjoy), iii. सलाह लेना (to seek advice), iv. खुशी होना (to feel happy: good), v. मदद करना (to help)

Here the system identified 5 different CPs all of which are correct and no CP in the sentence has gone undetected. The POS projection and word alignment method (Mukerjee et al., 2006) would fail to identify CPs सलाह लेना (to seek advice), and खुशी होना (to feel happy).

(2)
English sentence:
Thousands of children are already benefiting from the input of people like you - people who care about children and their future, who have the commitment, energy and enthusiasm to be positive role models, and who value the opportunity for a worthwhile career.

Aligned Hindi sentence:
आप जैसे लोग जो कि बच्चों और उनके भविष्य के बारे में सोचते हैं - इस समय भी हजारों बच्चों को लाभ पहुंचा रहे हैं। अच्छे आदर्श बनने के लिए ऐसे लोगों में प्रतिष्ठा होती है और वे एक समर्थन - योग्य व्यवसाय की कटौती करते हैं।

The CPs identified in the sentence:
i. आदर्श बनना (to be role model), ii. कटौती करना (to respect)

Here also the two CPs identified are correct.

It is obvious that this empirical method of mining CPs will fail whenever the Hindi light verb maps on to its core meaning in English. It may also produce garbage as POS of the preceding word is not being checked. However, the mining success rate obtained speaks of these being in small numbers in practice. Use of the ‘stop words’ in allowing the intervening words within the CPs helps a lot in improving the performance. Similarly, use of the ‘exit words’ avoid a lot of incorrect identification.

5 Conclusions

The simple empirical method for mining CPs outlined in this work, yields an average 89% of precision and 90% recall which is better than the results reported so far in the literature. The major drawback is that we have to generate a list of all possible light verbs. This list appears to be very large for Hindi. Since no POS tagging or statistical analysis is performed, the identified CPs are merely a list of mined CPs in Hindi with no linguistic categorization or analysis. However, this list of mined CPs is valuable to the lexicographers and other language technology developers. This list can also be used for word alignment tools where the identified components of CPs are grouped together before the word alignment process. This will increase both the alignment accuracy and the speed.

The methodology presented in this work is equally applicable to all other languages within the Indo-Aryan family.

References

Distributors, New Delhi

Mirium Butt and Gillian Ramchand. 2001. *Complex Aspectual Structure in Hindi/Urdu*. In Maria Lia-
kata, Britta Jensen and Didier Maillat (Editors), Oxford University Working Papers in Linguistics,

Miriam Butt, Tracy Holloway King, and John T. Maxwell III. 2003. Complex Predicates via Re-
striction, *Proceedings of the LFG03 Conference*.

Miriam Butt and Wilhelm Geuder. 2001. *On the (semi)lexical status of light verbs*. In Norbert Corv-
er and Henk van Riemsdijk, (Editors), Semi-lexical Categories: On the content of function words and
the function of content words, Mouton de Gruyter, Berlin, 323–370.

Hindi*. Doctoral dissertation, University of Texas, Austin.

Peter Edwin Hook. 1974. *The Compound Verb in Hindi*. Center for South and Southeast Asian Stu-
dies: The University of Michigan.

Venkatapathy Sriram and Aravind K. Joshi, 2005. Relative compositionality of multi-word expres-
sions: a study of verb-noun (V-N) collocations, *In Proceedings of International Joint Conference on
Natural Language Processing - 2005, Jeju Island, Korea*, 553-564.